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Basic setup

Many networks represent relational information among a fixed collection of
individuals:

Friendships among co-workers
International relations among countries
Connectivity among neurons

Vertices are fixed and known prior to observing the relations (edges) among them.
Typically represented as a graph G = (V ,E) with vertex set V and edge set
E ⊆ V × V .

Sociogram from Moreno (1930s).
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Scenario 1: International Relations Data

Let [n] = {1, . . . , n} index a set of countries (e.g., USA, England, China, Russia,
etc.).

Y = (Yij)1≤i,j≤n be the binary relational data with Yij = 1 if i imports goods from j
and Yij = 0 otherwise.

USA Russia China England · · ·
USA − 0 1 1 · · ·

Russia − 1 0 · · ·
China − 0 · · ·

England − · · ·
...

...
...

...
...

. . .

Assume that Y is observed without any further information about the countries,
such as GDP, geographical location, etc.

Goal: describe any interesting patterns among the trade relationships among
these countries.
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Summarizing network structure

Scenario 1: Data for fixed collection of countries (no sampling).

Sociometric studies: number of vertices small/moderate, but network still too
complex to visualize.

Model serves as tool for summarizing network structure. (Exploratory Data
Analysis).

Properties of good model:
Easily interpretable parameters.

Computationally feasible.

No need for sophisticated generative models or sampling constraints.

Common approach:

Compute summary statistics of interest.

Analyze how network structure depends on these statistics.
For example:

reciprocity: both i and j import from one another
differential attractiveness: popularity compared to other vertices
transitivity: if i imports from j and j imports from k , how likely that i imports from k?
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Dyad independence model

Dyad: Dij = (Yij ,Yji) (relationship for pair i and j)

Define a probability distribution pij for each dyad Dij , 1 ≤ i < j ≤ n:

pij(z, z′) := Pr(Dij = (z, z′)), z, z′ ∈ {0, 1}. (1)

p1 model: Given p = (pij)1≤i<j≤n and the assumption that dyads (Dij)1≤i<j≤n are
independent according to (1), Y = (Yij)1≤i,j≤n has distribution

Pr(Y = y;p) =
∏

1≤i<j≤n

pij(yij , yji) (2)

∝ exp

 ∑
1≤i<j≤n

ρijyijyji +
∑

1≤i 6=j≤n

θijyij

 (3)

for each y = (yij)1≤i,j≤n ∈ {0, 1}n×n, where

ρij = log
(

pij(0, 0)pij(1, 1)
pij(0, 1)pij(1, 0)

)
and

θij = log(pij(1, 0)/pij(0, 0)).
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p1 model (Holland and Leinhardt)

Pr(Y = y;p) ∝ exp

 ∑
1≤i<j≤n

ρijyijyji +
∑

1≤i 6=j≤n

θijyij


for

ρij = ρ and

θij = θ + αi + βj .

ρ indicates the relative probability that two generic vertices reciprocate their
relation to one another;
αi and βi capture the differential attactiveness of each vertex i , which indicate how
strongly (relative to other vertices) i is to have outgoing links (αi ) and incoming
links (βi ).
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p1 model (Holland and Leinhardt)

Benefits:

Interpretable parameters

Computable in closed form

Consistent with respect to selection sampling (more later)

Drawbacks:

Address only specific attributes (reciprocity, differential attractiveness)

Not flexible enough for most applications of interest
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Exponential random graph model (ERGM)

Real-valued parameters θ1, . . . , θk ∈ R.
Sufficient statistics T1, . . . ,Tk : {0, 1}n×n → R.
Definition: The exponential random graph model (ERGM) with (natural)
parameter θ = (θ1, . . . , θk ) and (canonical) sufficient statistic T = (T1, . . . ,Tk )
assigns probability

Pr(Y = y; θ,T ) =
exp{

∑k
i=1 θiTi(y)}∑

y∗∈{0,1}n×n exp{
∑k

i=1 θiTi(y∗)}
(4)

to each y ∈ {0, 1}n×n.
p1 model and Erdős–Rényi model have form of (4).
Much more general than p1 model, but difficult to compute normalizing constant
and lacks consistency under subsampling.
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Scenario 2: Friendships in a high school

High school with N students.

Sample n < N students and observe the friendships among them.

Unlike previous (IR) scenario, the observed relationships here are only a sample
of the total population of friendships of interest.

Using the observation Yn to infer patterns in the population YN requires an
assumption about how the sampled students are related to the population of all
students.

Inference about YN based on Yn entails an assumption that Yn is somehow
representative of the population YN , raising the question:

In what way is the observed data Yn representative of the relationships
YN for the whole population?
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Network inference under sampling

Arises in high school friendship scenario, not International Trade scenario.
Consider how the observed friendships vary if obtained under the following
different scenarios:

1 n students are sampled uniformly among all freshman, i.e., first year students, in the
school;

2 n students are sampled uniformly among all senior, i.e., final year students, in the
school;

3 n students are sampled uniformly among all students in the school; and
4 all students who write for the school newspaper, of which there are n in total, are

sampled.

Scenarios 1-3: sampling mechanism is the same but population is different.
Scenario 4: population is same as in 3, but sampling mechanism differs —
sampled students are known to already have similar interests, i.e., writing for the
newspaper, and therefore more likely than randomly selected students to be
friends.
Also notice: number of observed individuals in Scenario 4 is determined by
number of students who write for the newspaper — not specified a priori by data
analyst as in scenarios 1–3.

Effects of observation/sampling mechanism often overlooked in network modeling.
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Moving forward

Sampling considerations not exclusive to network modeling — all well-specified
statistical models must account for observation mechanism.
In many classical settings the observation mechanism is obvious and, therefore,
overlooked.

e.g., i.i.d. assumption establishes implicit relationship between observed data and rest
of population — all observations independent and from same distribution.
Even in this case, assumption must be scrutinized with respect to circumstances of the
given problem.

Departures from i.i.d. have led to new frameworks, e.g., time series, hidden
Markov models, etc.

Some recent progress on sampling in network modeling, but most of the focus has
been on selection sampling.
Selection sampling unrealistic for most practical applications.

References to p1 model and ERGM:

Frank and Strauss. Markov Graphs.

Holland and Leinhardt. An exponential family of probability distributions for
directed graphs.

Wasserman and Pattison. Logit models and logistic regression for social networks.
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