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Specification of generative models

@ Sampling models (Chapter 3) specified by
e candidate distributions describing network variation
e sampling scheme that links the population Y to the sample Y, = %, y Yy

@ Generative models (Chapter 4) specified by

e candidate distributions
@ generative scheme to describe network growth

@ Describe generative scheme by an evolution map.
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Evolution maps (Chapter 4 of FPSNA)

Forn< N, call P : {0,1}"" — {0, 1}"*N an evolution map if

P(Y)lim =y forally e {0,1}"".

An evolution map is an operation by whichy € {0,1}"" ‘evolves’ into
P(y) € {0,1}¥*N by holding fixed the part of the network that already exists, namely'y.

@ Let P, v be the set of all evolution maps {0, 1}™" — {0, 1}V*N,

@ A generating scheme is a random map I,y in P, n. Distribution can depend on
Y,

@ More precisely, M, n Y, is the network with N vertices obtained by first generating
Y, and, given Y, =y, putting N, n Y, = P(y), for P € P, n chosen according to
the conditional distribution of M, n given Y, =y.

@ The distribution of M, n Y, is computed by

Pr(ManYn=Yy) = Z Pr(Man =P Yr =Y i) Pr(Yo =Y [)1(PY 1) = ¥).

PE'P,,’N
(1)

where 1(-) is the indicator function.
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Generative consistency

Definition (Generative consistency (Definition 4.1 of PESNA))

LetY, and Yy be random {0, 1}-valued arrays and let T, n be a generating scheme.
ThenY, andY y are consistent with respect to I, n if

MonYn=pYn,

for N, n Y, defined by the distribution in (1).

Duality between generative consistency and consistency under selection:

For any Y, and generating mechanism I, n, define Yy by Yy = My n Y,. Then by the
defining property of an evolution map, Y, and Yy enjoy the relationship

Son Yy =SonManY,=Y, with probability 1;

thatis, Y, and N, n Y, are consistent under selection by default.
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Preferential attachment model (Barabasi—Albert)

@ Dynamics based on Simon’s preferential attachment scheme for heavy-tailed
distributions.

@ Vertices arrive one at a time and attach preferentially to previous vertices based
on their degree.

Formal definition:

@ Take m > 1 (integer) and § > —m (real number) so that each new vertex attaches
randomly to m existing vertices with probability increasing with degree.

@ Initiate at a graph y, with ny > 1 vertices, which then evolves successively into
Y1, Y., ... by connecting a new vertex to the existing graph at each step.

@ Foranyy = (yj)i<ij<nandevery i =1,...,n, the degree of i in y is the number of
edges incident to /,

deg, () =>_yi-
j#i

@ Atstep n > 1, a new vertex v, attaches to m > 1 vertices in y,_,, with each of the
m vertices v’ chosen independently without replacement with probability
proportional to

deg, (V')+d/m.
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Barabasi—Albert model (Generative scheme)

@ In keeping with the notation of Section 4.1, let I‘Ik s k < n, denote the generating
mechanism for the process parameterizedby m>1and § > —m.

@ By letting the parameters np > 1, m > 1, and § > —m vary over all permissible
values and treating the initial conditions y, and no as fixed, the above generating
mechanism determines a family of distributions for each finite sample size n > 1,
where n is the number of vertices that have been added to y,,.

@ For each n > 1, this process gives a collection of distributions M, indexed by
(m, d), and each distribution in My indexed by (m, §) is related to a distribution in
M, n > k, with the same parameters through the preferential attachment scheme
I‘Ii’,’;7 associated to the model.

@ For any choice of parameter (4, m), we express the relationship between Y, and
Y, n>k,by
Yo=p M7 Y.
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Barabéasi—Albert model (Empirical properties)

Sparsity:
@ Lety = (y\"),>1 be sequence of graphs (y(" has n vertices).

@ Cally sparse if
(m _
nll>oo n n— Z ylj =0
1</;£/<n
@ Under BA model, (Y,)s>1 grows by adding one vertex at a time with m new edges,
so that ]

———— > Vj=———(mn+m)—>0 asn-—oo.

n(n—1) e n(n—1)
@ Networks under BA model are sparse with probability 1.

Power law degree distribution:

@ Fork > 1, let

k)y=n"" Z1(degy(i) = k).

@ Asequencey = (y),>1 exhibits power law degree distribution with exponent
v > 1if

Py (K) ~ =% forall large k as n — oo,

where a(k) ~ b(k) indicates that a(k)/b(k) — 1 as k — cc.
@ BA model with parameter (5, m) has power law degree distribution with exponent
3 + §/m with probability 1.
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Power law and ‘scale-free’ networks

@ Many real-world networks believed to exhibit power law, or nearly power law,
degree distribution (Barabasi—Albert, ...).
@ Heuristic check: power law degree distribution implies
log py(k) ~ —vlog(k), large k > 1. (2)
@ Yule—Simon distribution (dotted) vs. line —3log(k) (solid).

Power law distribution with exponent 3

~gammatiog(degree)

log(degree)

Figure: Dotted line shows log-log plot of the Yule—Simon distribution for v = 3. Solid line
shows the linear approximation in (2) by approximating I'(v) /T (k 4+ ~) ~ ¥, which holds
asymptotically for large values of k.
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Random walk (RW) models

@ Add a new edge at each step (instead of new vertex as in BA model).

@ Start with initial graph y, and evolve y,,y,, ... as follows.

o Atstep n> 1, choose vertex v, iny,_4 randomly with distribution Fj (which can
depend ony,_;). Then draw a random nonnegative integer L, from distribution also
dependingony,_;.

o Given v and Lp, perform a simple random walk ony,,_4 for L, steps starting at vy.
o If after L, steps the random walk is at v* # vj,, then add edge between v* and vp;

otherwise, add new vertex v** and put edge between v** and vj.

@ Choosing v, by degree-biased distribution on y,_, and taking L, to be large
simulates BA model.

@ For more details on these models see Bloem-Reddy and Orbanz
(https://arxiv.org/abs/1612.06404), Bollobas, et al (2003), and related
work.
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Erdds—Rényi—Gilbert model

@ Classical Erdés—Rényi—Gilbert model includes each edge in random graph
independently with fixed probability 6.

@ Generative description: For any 6 € [0, 1], define I'I,’;’N as the generating scheme
which acts on {0,1}"" by

y = M)
Bini1 - Bin
y : :
Bn,n+1 Bn,N
v - Bni11 -+ Bpgan 0 -+ Bpan
Bvi -+ Bnn Bnpsr oo 0

which fixes the upper n x n submatrix to be y and fills in the rest of the off-diagonal
entries with i.i.d. Bernoulli random variables (Bj)1<ix<n With success probability 6.
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General sequential construction

@ Above examples start with a base case Y, from which a family of networks
Y,,Y,,...is constructed inductively according to a random scheme.

@ A generic way to specify a generative network model is to specify a conditional
distribution for Y, given Y ,_; such that Y, |j,—1; = Y ,_y with probability 1.

@ Conditional distribution Pr(Y, = - | Y,_1) determines the distribution of a random
generating mechanism M,_1 5 iN Po_1,n
= Y, can be expressedas Y, = MN,_1,Y,_ forevery n > 1.

@ Composing these actions for successive values of n determines the generating
mechanism I, n, N < N, by the law of iterated conditioning:

= Given Y, construct Yy = M,y Y, by
Yn = Nn—1 v (Av—2n=1(- - (M0t Yn)))-
@ The conditional distribution of Y given Y, computed by
Pr(Yn=y" [ Yo=Y |im) =
= Pr(¥n=y" [ Yn_1 =Y [nv—1)) X Pr(¥n—1 =Y [nv—1y [ Yo =¥ |()

N—n
= JIPr(Mwinica (¥ Iv=n) = ¥ Iiveieny | Yo = ¥ Iiv—n)-

i=1
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Looking ahead: Network modeling paradigm

Network modeling paradigm (Chapter 5) gives framework to handle sampling models
(Chapter 3) and generative models (Chapter 4). J

See Chapters 3-5 of Probabilistic Foundations of Statistical Network Analysis
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