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Specification of generative models

Sampling models (Chapter 3) specified by
candidate distributions describing network variation
sampling scheme that links the population YN to the sample Yn = Σn,N YN

Generative models (Chapter 4) specified by
candidate distributions
generative scheme to describe network growth

Describe generative scheme by an evolution map.
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Evolution maps (Chapter 4 of FPSNA)

Definition

For n ≤ N, call P : {0, 1}n×n → {0, 1}N×N an evolution map if

P(y)|[n] = y for all y ∈ {0, 1}n×n.

An evolution map is an operation by which y ∈ {0, 1}n×n ‘evolves’ into
P(y) ∈ {0, 1}N×N by holding fixed the part of the network that already exists, namely y.

Let Pn,N be the set of all evolution maps {0, 1}n×n → {0, 1}N×N .
A generating scheme is a random map Πn,N in Pn,N . Distribution can depend on
Yn.
More precisely, Πn,N Yn is the network with N vertices obtained by first generating
Yn and, given Yn = y, putting Πn,N Yn = P(y), for P ∈ Pn,N chosen according to
the conditional distribution of Πn,N given Yn = y.
The distribution of Πn,N Yn is computed by

Pr(Πn,N Yn = y) =
∑

P∈Pn,N

Pr(Πn,N = P | Yn = y |[n]) Pr(Yn = y |[n])1(P(y |[n]) = y),

(1)
where 1(·) is the indicator function.
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Generative consistency

Definition (Generative consistency (Definition 4.1 of PFSNA))

Let Yn and YN be random {0, 1}-valued arrays and let Πn,N be a generating scheme.
Then Yn and YN are consistent with respect to Πn,N if

Πn,N Yn =D YN ,

for Πn,N Yn defined by the distribution in (1).

Duality between generative consistency and consistency under selection:

For any Yn and generating mechanism Πn,N , define YN by YN = Πn,N Yn. Then by the
defining property of an evolution map, Yn and YN enjoy the relationship

Sn,N YN = Sn,N Πn,N Yn = Yn with probability 1;

that is, Yn and Πn,N Yn are consistent under selection by default.
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Preferential attachment model (Barabási–Albert)

Dynamics based on Simon’s preferential attachment scheme for heavy-tailed
distributions.

Vertices arrive one at a time and attach preferentially to previous vertices based
on their degree.

Formal definition:

Take m ≥ 1 (integer) and δ > −m (real number) so that each new vertex attaches
randomly to m existing vertices with probability increasing with degree.

Initiate at a graph y0 with n0 ≥ 1 vertices, which then evolves successively into
y1, y2, . . . by connecting a new vertex to the existing graph at each step.

For any y = (yij )1≤i,j≤n and every i = 1, . . . , n, the degree of i in y is the number of
edges incident to i ,

degy (i) =
∑
j 6=i

yij .

At step n ≥ 1, a new vertex vn attaches to m ≥ 1 vertices in yn−1, with each of the
m vertices v ′ chosen independently without replacement with probability
proportional to

degyn−1
(v ′) + δ/m.

Harry Crane Chapter 4: Generative models 6 / 13



Barabási–Albert model (Generative scheme)

In keeping with the notation of Section 4.1, let Πδ,mk,n , k ≤ n, denote the generating
mechanism for the process parameterized by m ≥ 1 and δ > −m.

By letting the parameters n0 ≥ 1, m ≥ 1, and δ > −m vary over all permissible
values and treating the initial conditions y0 and n0 as fixed, the above generating
mechanism determines a family of distributions for each finite sample size n ≥ 1,
where n is the number of vertices that have been added to y0.

For each n ≥ 1, this process gives a collection of distributionsMn indexed by
(m, δ), and each distribution inMk indexed by (m, δ) is related to a distribution in
Mn, n ≥ k , with the same parameters through the preferential attachment scheme
Πδ,mk,n associated to the model.

For any choice of parameter (δ,m), we express the relationship between Yk and
Yn, n ≥ k , by

Yn =D Πδ,mk,n Yk .
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Barabási–Albert model (Empirical properties)

Sparsity:
Let y = (y(n))n≥1 be sequence of graphs (y(n) has n vertices).
Call y sparse if

lim
n→∞

1
n(n − 1)

∑
1≤i 6=j≤n

y (n)
ij = 0.

Under BA model, (Yn)n≥1 grows by adding one vertex at a time with m new edges,
so that

1
n(n − 1)

∑
1≤i 6=j≤n

Yij =
1

n(n − 1)
(mn + n0)→ 0 as n→∞.

Networks under BA model are sparse with probability 1.
Power law degree distribution:

For k ≥ 1, let

py (k) = n−1
n∑

i=1

1(degy (i) = k).

A sequence y = (y(n))n≥1 exhibits power law degree distribution with exponent
γ > 1 if

py(n) (k) ∼ γ−k for all large k as n→∞,
where a(k) ∼ b(k) indicates that a(k)/b(k)→ 1 as k →∞.
BA model with parameter (δ,m) has power law degree distribution with exponent
3 + δ/m with probability 1.
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Power law and ‘scale-free’ networks

Many real-world networks believed to exhibit power law, or nearly power law,
degree distribution (Barabási–Albert, ...).
Heuristic check: power law degree distribution implies

log py (k) ∼ −γ log(k), large k ≥ 1. (2)

Yule–Simon distribution (dotted) vs. line −3 log(k) (solid).
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Figure: Dotted line shows log-log plot of the Yule–Simon distribution for γ = 3. Solid line
shows the linear approximation in (2) by approximating Γ(γ)/Γ(k + γ) ∼ γ−k , which holds
asymptotically for large values of k .
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Random walk (RW) models

Add a new edge at each step (instead of new vertex as in BA model).

Start with initial graph y0 and evolve y1, y2, . . . as follows.

At step n ≥ 1, choose vertex vn in yn−1 randomly with distribution Fn (which can
depend on yn−1). Then draw a random nonnegative integer Ln from distribution also
depending on yn−1.

Given vn and Ln, perform a simple random walk on yn−1 for Ln steps starting at vn.

If after Ln steps the random walk is at v∗ 6= vn, then add edge between v∗ and vn;
otherwise, add new vertex v∗∗ and put edge between v∗∗ and vn.

Choosing vn by degree-biased distribution on yn−1 and taking Ln to be large
simulates BA model.

For more details on these models see Bloem-Reddy and Orbanz
(https://arxiv.org/abs/1612.06404), Bollobas, et al (2003), and related
work.
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Erdős–Rényi–Gilbert model

Classical Erdős–Rényi–Gilbert model includes each edge in random graph
independently with fixed probability θ.

Generative description: For any θ ∈ [0, 1], define Πθn,N as the generating scheme
which acts on {0, 1}n×n by

y 7→ Πθn,N(y)

y 7→



B1,n+1 · · · B1,N

y
...

. . .
...

Bn,n+1 · · · Bn,N

Bn+1,1 · · · Bn+1,n 0 · · · Bn+1,N
...

. . .
...

...
. . .

...
BN,1 · · · BN,n BN,n+1 · · · 0


,

which fixes the upper n× n submatrix to be y and fills in the rest of the off-diagonal
entries with i.i.d. Bernoulli random variables (Bij )1≤i 6=j≤N with success probability θ.
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General sequential construction

Above examples start with a base case Y0, from which a family of networks
Y1,Y2, . . . is constructed inductively according to a random scheme.
A generic way to specify a generative network model is to specify a conditional
distribution for Yn given Yn−1 such that Yn |[n−1] = Yn−1 with probability 1.
Conditional distribution Pr(Yn = · | Yn−1) determines the distribution of a random
generating mechanism Πn−1,n in Pn−1,n

=⇒ Yn can be expressed as Yn = Πn−1,n Yn−1 for every n ≥ 1.
Composing these actions for successive values of n determines the generating
mechanism Πn,N , n ≤ N, by the law of iterated conditioning:
=⇒ Given Yn, construct YN = Πn,N Yn by

YN = ΠN−1,N(ΠN−2,N−1(· · · (Πn,n+1 Yn))).

The conditional distribution of YN given Yn computed by

Pr(YN = y∗ | Yn = y∗ |[n]) =

= Pr(YN = y∗ | YN−1 = y∗ |[N−1])× Pr(YN−1 = y∗ |[N−1] | Yn = y∗ |[n])

=
N−n∏
i=1

Pr(ΠN−i,N−i+1(y∗ |[N−i]) = y∗ |[N−i+1] | YN−i = y∗ |[N−i]).
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Looking ahead: Network modeling paradigm

Network modeling paradigm (Chapter 5) gives framework to handle sampling models
(Chapter 3) and generative models (Chapter 4).

See Chapters 3–5 of Probabilistic Foundations of Statistical Network Analysis
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