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Chapters 3 and 4 highlight two primary contexts of network analysis:

Chapter 3: modeling sampled network data.

Chapter 4: modeling evolving networks.

Immediate observations:

The concept of ‘network’ should not be conflated with the mathematical notion of
‘graph’ (Chapter 1).

Sampling mechanism plays important role in model specification and statistical
inference from sampled networks (Chapter 3).

Statistical units are determined by the way in which the data is observed (Section
3.7).

The explicit and implicit units should be aligned so that model-based inferences
are compatible with their intended interpretation (Section 3.8).

In this chapter, think of YN as generic ‘network data’ of ‘size’ N in space NN of all such
networks, where the interpretation of ‘network’ depends on context and ‘size’ is the
number of units in that context.

In Section 2.4, NN = {0, 1}N×N and the size is the number of vertices.

In Section 3.6.1.1, NN is the set of edge-labeled graphs with N edges and size is
the number of edges.

In Section 3.6.1.3, NN is the set of path-labeled graphs with N paths and size is
the number of paths.
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What is a statistical model?

According to conventional wisdom in statistics literature:

A statistical model is a set of probability distributions on the sample space.

Questions:

Just a set: {P1,P2, . . .}?
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All models are wrong ...

All models are wrong, but some are useful.

George Box (1919–2013)

A statistical model is a set of probability distributions on the sample space.

Questions:

How can a set be ‘wrong’?

What determines whether this set is ‘useful’?
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Summary of Conclusions

(I) What is a statistical model?

Model = Description + Context

‘set’ + ‘inference rules’

(II) All models are wrong, but some are useful.

First step to being ‘useful’ is ‘making sense’.

Coherence: Model and inferences ‘make sense’ in a single context.

(III) Network Modeling:

Sound theory for network analysis should be built on models that are

(i) coherent and

(ii) account for realistic sampling schemes.
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Role of the model

All models are wrong, but some are useful.

A statistical model is a set of probability distributions on the sample space.

Role of the model in statistics:

Sometimes exploratory data analysis (EDA)

More often inference (out of sample) and prediction

Asymptotic approximations

When is a model useful for these purposes?
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Just one set?

Scenario:

X1,X2, . . . are i.i.d. N (µ, 1).

Observe:

X∗1 , . . . ,X
∗
n for some finite n ≥ 1.

Model:
Set of distributions {N (µ, 1) : −∞ < µ <∞} on R.

What can I do with this?
Estimate population parameter µ based on sample X∗1 , . . . ,X

∗
n . (e.g., MLE,

Bayesian posterior inference, ...)

What makes this possible?
Assumed: X1,X2, . . . i.i.d. N (µ, 1) (population data).

Implicit: X∗1 , . . . ,X
∗
n i.i.d. N (µ, 1) (sampled data).

Relationship between population and sample left implicit by convention.

Leaving relationship between inferential universe (population) and observed data
(sample) ambiguous causes confusion in more complicated situations.
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Modeling household sizes

Scenario:

X1, . . . ,XN are sizes (i.e., # of residents) of N households in a population. Household
sizes are i.i.d. from a ‘1-shifted Poisson’:

Pr(Xi = k + 1;λ) = λk e−λ/k !, k = 0, 1, . . . . (1)

Observe:

X∗1 , . . . ,X
∗
n for some n < N.

Model: (Depends on context)

1. X∗1 , . . . ,X
∗
n obtained by sampling uniformly without replacement from X1, . . . ,XN .

(Sampling households)

=⇒ X∗1 , . . . ,X
∗
n i.i.d. from (1).

2. X∗1 , . . . ,X
∗
n obtained by sampling individuals in population and recording the size

of their household. (Size-biased sampling)

Pr(X∗i = k + 1;λ) =
(k + 1)λk e−λ

(λ+ 1)k !
, k = 0, 1, . . . .
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What is a statistical model?

A statistical model consists of

M Description of the observed data: Set of candidate distributions
C Context under which data observed: Relations among different sets

For each n ≥ 1, the model (M, C) induces a set of candidate distributionsMn for
sample of size n.

What makes a modelM “statistical” is that it can be used for statistical inference.
Requires the context C under which the inference is performed.

Population Observed network (sample)
YN Yn

Model M Mn (induced by context)
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What is a statistical model?

A statistical model consists of

M Description of the observed data: Set of candidate distributions
C Context under which data observed: Relations among different sets

For each n ≥ 1, the model (M, C) induces a set of candidate distributionsMn for
sample of size n.

What makes a modelM “statistical” is that it can be used for statistical inference.
Requires the context C under which the inference performed.

Example (i.i.d. sequence):

M = {N (µ, 1) : −∞ < µ <∞}
For n ≥ 1, (X∗1 , . . . ,X

∗
n ) modeled asMn = {N⊗n(µ, 1) : −∞ < µ <∞}

Example (household sizes):

M = {1-shifted Poisson(λ) : λ > 0}
For n ≥ 1, (X∗1 , . . . ,X

∗
n ) modeled from size-biased distribution (assuming 2nd

context of sampling individuals)
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‘Using’ the model

Given: model (M, C) with induced sample models {Mn}n≥1.
1 Given data D of size n ≥ 1.
2 Find optimal candidate distribution P̂n inMn based on D (according to some

criteria).
3 Infer optimal distribution P̂M by interpreting P̂n in context C.

Example (i.i.d. sequence):

M = {N (µ, 1) : −∞ < µ <∞}
For n ≥ 1, (X∗1 , . . . ,X

∗
n ) modeled asMn = {N⊗n(µ, 1) : −∞ < µ <∞}.

Given P̂n = N⊗n(µ̂, 1) infer P̂M = N (µ̂, 1).

Example (household sizes):

M = {1-shifted Poisson(λ) : λ > 0}
For n ≥ 1, (X∗1 , . . . ,X

∗
n ) modeled from size-biased distribution (assuming 2nd

context of sampling individuals).

Given P̂n from size-based with parameter λ̂n, infer population parameter through
relationship λ̂n ↔ λ̂n − 1.
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Sampling context (Example)

For m ≤ n define selection sampling

Sm,n : Rn → Rm

(x1, . . . , xn) 7→ (x1, . . . , xm)

For a distribution F on Rn, let Sm,n F denote distribution of Sm,n Xn for Xn ∼ F .
(Note: Sm,n F = FS−1

m,n, usual induced distribution)
Given setMn, we write set of all induced distributions as

Sm,nMn = {Sm,n F : F ∈Mn}.

Population Observed network (sample)
X Xn

(X1,X2, . . .) Sn,N X = (X1, . . . ,Xn)

Model M = {N⊗∞(µ, 1)} Sn,NM =Mn = {N⊗n(µ, 1)}

Sampling scheme Sm,n necessary to establish relationship between observation
and population.

Sampling mechanism often (almost always) left out of model specification.
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General sampling context

For m ≤ n and injection ψ : [m]→ [n], define ψ-sampling Sψm,n : Rn → Rm by

Sψm,n : Rn → Rm

(x1, . . . , xn) 7→ (xψ(1), . . . , xψ(m)).

Let Σm,n be random sampling map obtained by choosing ψ : [m]→ [n] randomly
and putting Σm,n = Sψm,n. (Distribution of ψ can depend on Xn.)

Write Σm,nF to denote the distribution of Sψm,n Xn for this randomly chosen ψ and
Xn ∼ F . Also write

Σm,nMn = {Σm,nF : F ∈Mn}.

Definition (Coherence)
A statistical model ({Mn}n≥1, {Σm,n}n≥m≥1) is coherent if

Σm,nMn = Mm for all n ≥ m ≥ 1

induced = specified
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Coherent =⇒ ‘useful’

Definition (Coherence)
A statistical model ({Mn}n≥1, {Σm,n}n≥m≥1) is coherent if

Σm,nMn =Mm for all n ≥ m ≥ 1.

Suppose ({Mn}n≥1, {Σm,n}n≥m≥1) is coherent.

Given data D of size m ≥ 1.

Estimate P̂m fromMm given D.

For n ≥ m, infer
P̂n = {F ∈Mn : Σm,nF = P̂m}.

* This set is a singleton if model is identifiable.

For smaller sample size (` ≤ m) estimate

P̂` = Σ`,mP̂m.

Coherence needed to guarantee (i) P̂n is non-empty and (ii) P̂` ∈M`.
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Application: Network analysis

These basic ideas are mostly ignored/invisible/unknown in the modern literature
on network analysis.

Frank and co-authors studied effects of sampling in social network analysis
(1970s, 80s, 90s).

Importance of sampling (and relevance of context) has not been emphasized in
the modern statistics literature until very recently (Crane–Dempsey, 2015).

Implications of exchangeability also seem to be poorly understood.

Assumed setting:

Population Observed network (sample)

Guiding Question:

How to model network data in the presence of sampling?
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Scenario 1: ERGM as population model

Given any sufficient statistics (T1, . . . ,Tk ) and parameters (θ1, . . . , θk ), assign
probability

Pr(Y = y; θ,T ) ∝ exp

{
k∑

i=1

θiTi (y)

}
, y = (yij )1≤i,j≤N ∈ {0, 1}N×N .

Holland and Leinhardt (1981), Frank and Strauss (1986), Wasserman and Pattison
(1996), Wasserman and Faust (1994).

Typical approach: Estimate θ by fitting ERGM (θ) to Yn, obtain θ̂n and use as
estimate for θ in population.

→ Validity of this step depends on context (i.e., coherence).

Population Sample
YN Yn

Model ERGM (θ) ???
Parameter θ θ
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Coherence in ERGMs

Theorem (Shalizi–Rinaldo)
Model for Sn,N(Yn) is ERGM (θ) if and only if sufficient statistics T have separable
increments.

=⇒ ({Mn}n≥1, {Sm,n}n≥m≥1) coherent if and only if T has “separable increments”
(very strong condition).

In other words, given Yn ∼ ERGM(θ,T ), the distribution of Sm,n Yn is also
parameterized by ‘θ’, but distribution of Sm,n Yn is unknown (in general).
=⇒ Relationship between θ in two models unknown =⇒ Cannot do inference.

Population Sample
YN Yn

Model ERGM (θ) ???
Parameter θ θ

Estimate ??? θ̂n
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Scenario 2: Vertex exchangeable models (graphons)

Let φ : [0, 1]× [0, 1]→ [0, 1] be a function (symmetric).

Generate U1,U2, . . . i.i.d. Uniform[0, 1].

Given U1,U2, . . ., generate edges conditionally independently by

Pr(Yij = 1 | U1,U2, . . .) = φ(Ui ,Uj )

Pr(Yij = 0 | U1,U2, . . .) = 1− φ(Ui ,Uj ).

Outcome Y = (Yij )i,j≥1 satisfies

Pr(Yn = (yij )1≤i,j≤n) =

∫
[0,1]n

∏
1≤i<j≤n

φ(ui , uj )
yij (1− φ(ui , uj ))1−yij du1 · · · dun.

Y is exchangeable: Yσ = (Yσ(i)σ(j))i,j≥1 =D Y for all permutations σ : N → N.

⇒ distribution of Y assigns equal probability to
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Coherence of graphon models

(Aldous–Hoover)
Let Y = (Yij )i,j≥1 be a vertex exchangeable random graph. Then Y is a mixture of
graphon processes.

(0) Sample φ ∼ ϕ randomly from among functions [0, 1]× [0, 1]→ [0, 1].
(1) Given φ, generate Y from the graphon model directed by φ.

Pr(Yn = (yij )1≤i,j≤n) =

∫
[0,1]2→[0,1]

∫
[0,1]n

φ(ui , uj )
yij (1−φ(ui , uj ))1−yij du1 · · · dunϕ(dφ).

Population Sample
YN Yn

Model graphon (φ) graphon (φ)
Parameter φ φ

Estimate φ̂n φ̂n
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An impasse

Many real world networks exhibit:

(A) sparsity/power law

(B) exchangeability, consistency of finite sample distributions

Fact (Aldous (1981), Hoover (1979), Lovász–Szegedy (2006))
An infinite exchangeable random graph is dense or empty with probability 1.

=⇒ Graphons cannot model (A) or (B).

Often used to refute vertex exchangeability in networks applications, but empirical
properties not even necessary to refute.

The assumed context is off.
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Implications of exchangeability assumption

Practical purpose of exchangeability assumption:
Account for arbitrary labels assigned to sampled vertices by assigning equal
probability to isomorphic graphs:

Tractable class of models by incorporating symmetries.

Further implications of exchangeability:
Also implies sampled vertices interchangeable with unsampled vertices.

Harry Crane Chapter 5: Statistical modeling paradigm 22 / 31



Implications of exchangeability assumption

Practical purpose of exchangeability assumption:
Account for arbitrary labels assigned to sampled vertices by assigning equal
probability to isomorphic graphs:

Tractable class of models by incorporating symmetries.

Further implications of exchangeability:
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Scenario 3: Phone calls from a database

Entries are sampled uniformly at random from a large database of phone calls (or
emails). Each observation (Ci ,Ri ) contains identity of the caller Ci and receiver Ri on
the ith sampled call.

Interested in inferring the structure of connections among users in the database.

Caller Receiver Time of Call . . .

555-7892 (a) 555-1243 (b) 15:34 . . .
550-9999 (c) 555-7892 (a) 15:38 . . .
555-1200 (d) 445-1234 (e) 16:01 . . .
555-7892 (c) 550-9999 (a) 15:38 . . .
...

...
...

. . .

Call sequence X1 = (a, b), X2 = (c, a), X3 = (d , e), X4 = (a, c) induces network:
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Interaction Networks

Dataset vertices edges
Actor collaborations actors movies
Enron email corpus employees emails
Karate club dataset club members social interactions
Wikipedia voting Wikipedia admin. votes
US Airport airports flights
Scientific collaborations scientists articles
UC Irvine online community members online messages
Political blogs Websites hyperlinks

These datasets are driven by interactions

Edges are the units — not represented as a (vertex-labeled) graph
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Edge exchangeable models

Vertices cannot be identified independently of their interactions with other vertices

Phone calls are sampled uniformly from the database⇒ exchangeable sequence
of pairs (C1,R1), (C2,R2), . . ..

Edge-labeled graph contains ‘sufficient information’ about network structure.
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Edge exchangeable models

Phone calls are sampled uniformly from the database⇒ exchangeable sequence
of pairs (C1,R1), (C2,R2), . . ..

Edge exchangeable model: Assign same probability to

Edge exchangeability⇐⇒ Size-biased vertex sampling

Other practical benefits (Hollywood model):
Easy for estimation, prediction, and testing questions.
Sparse with probability 1 for 1/2 < α < 1.
Power law with exponent α + 1 for 0 < α < 1.

H. Crane and W. Dempsey. (2016). Edge exchangeable models for interaction
networks. Journal of the American Statistical Association, in press.
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Sampling contexts for network models

ERGM: none known

Vertex exchangeable (graphons): representative sample of vertices

Edge exchangeable: representative sample of edges (size-biased vertices)

Relational exchangeability: representative sample of relations (Crane–Dempsey,
2016)

Relative exchangeability: representative sample of vertices subject to
heterogeneity in population (Crane–Towsner, 2015). Examples: stochastic
blockmodel (Holland and Leinhardt)

Completely random measures (graphex): representative sample edge patterns
with respect to duration of time (Caron–Fox, 2017).
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Summary of Conclusions

(I) What is a statistical model?

Model = Description + Context

‘set’ + ‘inference rules’

(II) All models are wrong, but some are useful.

First step to being ‘useful’ is ‘making sense’.

Coherence: Model and inferences ‘make sense’ in a single context.

(III) Network Modeling:

Sound theory for network analysis should be built on models that are

(i) coherent and

(ii) account for realistic sampling schemes.
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Conclusions

What is a statistical model?

Model = Description + Context

A statistical model has two components:

Descriptive: Mn – set of candidate distributions for each sample size n ≥ 1.

Inferential: C – context within which different sample sizes are related.

All models are wrong, but some are useful.

First step toward ‘usefulness’ is ‘making sense’ (coherence).

Models aren’t ‘right’ or ‘wrong’ but rather ‘coherent’ or ‘incoherent’.

Coherence: model ({Mn}n≥1, C) ‘makes sense’ within a single context.

Coherent models are ‘useful’ insofar as they ‘make sense’.

After coherence, other practical matters (e.g., computational tractability, accurate
context) determined on a case-by-case basis.
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Conclusions

Applications to Network Modeling:

Sound theory for network analysis should be build on models that are (i) coherent and
(ii) account for realistic sampling schemes.

Sampling mechanism should be accounted for in the context: edge sampling,
hyperedge sampling, path sampling, snowball sampling, ....
Current state of affairs: either no sampling context specified or vertex sampling
taken as implicit (e.g., Shalizi–Rinaldo, 2013).
Vertex sampling (selection, simple random sampling) usually not accurate
reflection of context.
⇒ Sound theory for network analysis should be built on models that are (i)
coherent and (ii) account for realistic sampling schemes.
Might this give clearer interpretation to asymptotics in network analysis?

H. Crane. (2018). Foundations and Principles of Statistical Network Modeling.
Chapman–Hall.

H. Crane and W. Dempsey. (2017). Edge exchangeable models for interaction
networks. Journal of the American Statistical Association.

H. Crane and W. Dempsey. (2015). A framework for statistical network modeling.

Harry Crane Chapter 5: Statistical modeling paradigm 31 / 31


