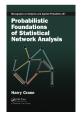
Probabilistic Foundations of Statistical Network Analysis Chapter 5: Statistical modeling paradigm

Harry Crane

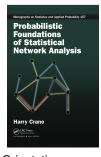
Based on Chapter 5 of Probabilistic Foundations of Statistical Network Analysis



Book website: http://www.harrycrane.com/networks.html

Harry Crane

Table of Contents



Chapter 1

- Orientation
- 2 Binary relational data
- 3 Network sampling
- 4 Generative models
- 5 Statistical modeling paradigm
- 6 Vertex exchangeability
- 7 Getting beyond graphons
- 8 Relative exchangeability
- 9 Edge exchangeability
- 10 Relational exchangeability
- 11 Dynamic network models

Chapters 3 and 4 highlight two primary contexts of network analysis:

- Chapter 3: modeling sampled network data.
- Chapter 4: modeling evolving networks.

Immediate observations:

- The concept of 'network' should not be conflated with the mathematical notion of 'graph' (Chapter 1).
- Sampling mechanism plays important role in model specification and statistical inference from sampled networks (Chapter 3).
- Statistical units are determined by the way in which the data is observed (Section 3.7).
- The explicit and implicit units should be aligned so that model-based inferences are compatible with their intended interpretation (Section 3.8).

In this chapter, think of \mathbf{Y}_N as generic 'network data' of 'size' N in space \mathcal{N}_N of all such networks, where the interpretation of 'network' depends on context and 'size' is the number of units in that context.

- In Section 2.4, $\mathcal{N}_N = \{0, 1\}^{N \times N}$ and the size is the number of vertices.
- In Section 3.6.1.1, N_N is the set of edge-labeled graphs with N edges and size is the number of edges.
- In Section 3.6.1.3, N_N is the set of path-labeled graphs with N paths and size is the number of paths.

According to conventional wisdom in statistics literature:

A statistical model is a set of probability distributions on the sample space.

Questions:

• Just a set: $\{P_1, P_2, \ldots\}$?

All models are wrong ...

All models are wrong, but some are useful.

George Box (1919-2013)

A statistical model is a set of probability distributions on the sample space.

Questions:

- How can a set be 'wrong'?
- What determines whether this set is 'useful'?

(I) What is a statistical model?

Model = Description + Context 'set' + 'inference rules'

(II) All models are wrong, but some are useful.

First step to being 'useful' is 'making sense'. **Coherence**: Model and inferences 'make sense' in a single context.

(III) Network Modeling:

Sound theory for network analysis should be built on models that are

- (i) coherent and
- (ii) account for realistic sampling schemes.

All models are wrong, but some are useful.

A statistical model is a set of probability distributions on the sample space.

Role of the model in statistics:

- Sometimes exploratory data analysis (EDA)
- More often inference (out of sample) and prediction
- Asymptotic approximations

When is a model useful for these purposes?

Just one set?

Scenario:

 $X_1, X_2, ...$ are *i.i.d.* $\mathcal{N}(\mu, 1)$.

Observe:

```
X_1^*, \ldots, X_n^* for some finite n \ge 1.
```

Model:

Set of distributions $\{\mathcal{N}(\mu, 1) : -\infty < \mu < \infty\}$ on \mathbb{R} .

What can I do with this?

Estimate population parameter μ based on sample X_1^*, \ldots, X_n^* . (e.g., MLE, Bayesian posterior inference, ...)

What makes this possible?

Assumed: X_1, X_2, \ldots i.i.d. $\mathcal{N}(\mu, 1)$ (population data).

Implicit: X_1^*, \ldots, X_n^* i.i.d. $\mathcal{N}(\mu, 1)$ (sampled data).

Relationship between population and sample left implicit by convention.

Leaving relationship between inferential universe (population) and observed data (sample) ambiguous causes confusion in more complicated situations.

Scenario:

 X_1, \ldots, X_N are sizes (i.e., # of residents) of N households in a population. Household sizes are i.i.d. from a '1-shifted Poisson':

$$Pr(X_i = k + 1; \lambda) = \lambda^k e^{-\lambda} / k!, \quad k = 0, 1, \dots$$
(1)

Observe:

 $X_1^*, ..., X_n^*$ for some n < N.

Model: (Depends on context)

1. X_1^*, \ldots, X_n^* obtained by sampling uniformly without replacement from X_1, \ldots, X_N . (Sampling households)

 \implies X_1^*, \ldots, X_n^* i.i.d. from (1).

X₁^{*},..., X_n^{*} obtained by sampling individuals in population and recording the size of their household. (Size-biased sampling)

$$\Pr(X_i^* = k + 1; \lambda) = \frac{(k+1)\lambda^k e^{-\lambda}}{(\lambda+1)k!}, \quad k = 0, 1, \dots$$

What is a statistical model?

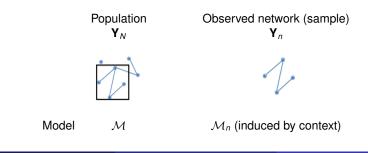
A statistical model consists of

- \mathcal{M} Description of the observed data:
- C Context under which data observed:

Set of candidate distributions Relations among different sets

For each $n \ge 1$, the model $(\mathcal{M}, \mathcal{C})$ induces a set of candidate distributions \mathcal{M}_n for sample of size n.

What makes a **model** \mathcal{M} "statistical" is that it can be used for statistical inference. Requires the **context** \mathcal{C} under which the inference is performed.



A statistical model consists of

- *M Description* of the observed data:
- C Context under which data observed:

Set of candidate distributions Relations among different sets

For each $n \ge 1$, the model (M, C) induces a set of candidate distributions M_n for sample of size n.

What makes a **model** M "statistical" is that it can be used for statistical inference. Requires the **context** C under which the inference performed.

Example (i.i.d. sequence):

$$\mathcal{M} = \{\mathcal{N}(\mu, 1) : -\infty < \mu < \infty\}$$

For $n \ge 1$, (X_1^*, \dots, X_n^*) modeled as $\mathcal{M}_n = \{\mathcal{N}^{\otimes n}(\mu, 1) : -\infty < \mu < \infty\}$

Example (household sizes):

 $\mathcal{M} = \{1\text{-shifted Poisson}(\lambda): \lambda > 0\}$

For $n \ge 1$, (X_1^*, \ldots, X_n^*) modeled from size-biased distribution (assuming 2nd context of sampling individuals)

'Using' the model

Given: model $(\mathcal{M}, \mathcal{C})$ with induced sample models $\{\mathcal{M}_n\}_{n\geq 1}$.

- Given data **D** of size $n \ge 1$.
- Find optimal candidate distribution P̂_n in M_n based on D (according to some criteria).
- Infer optimal distribution $\hat{P}_{\mathcal{M}}$ by interpreting \hat{P}_n in context \mathcal{C} .

Example (i.i.d. sequence):

$$\begin{split} \mathcal{M} &= \{\mathcal{N}(\mu,1): -\infty < \mu < \infty\} \\ \text{For } n \geq 1, \, (X_1^*, \dots, X_n^*) \text{ modeled as } \mathcal{M}_n = \{\mathcal{N}^{\otimes n}(\mu,1): -\infty < \mu < \infty\}. \\ \text{Given } \hat{\mathcal{P}}_n &= \mathcal{N}^{\otimes n}(\hat{\mu},1) \text{ infer } \hat{\mathcal{P}}_{\mathcal{M}} = \mathcal{N}(\hat{\mu},1). \end{split}$$

Example (household sizes):

 $\mathcal{M} = \{1\text{-shifted Poisson}(\lambda) : \lambda > 0\}$

For $n \ge 1$, (X_1^*, \ldots, X_n^*) modeled from size-biased distribution (assuming 2nd context of sampling individuals).

Given \hat{P}_n from size-based with parameter $\hat{\lambda}_n$, infer population parameter through relationship $\hat{\lambda}_n \leftrightarrow \hat{\lambda}_n - 1$.

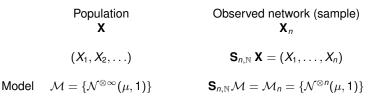
• For *m* ≤ *n* define selection sampling

$$\mathbf{S}_{m,n}: \mathbb{R}^n \to \mathbb{R}^m$$

 $(x_1, \dots, x_n) \mapsto (x_1, \dots, x_m)$

- For a distribution *F* on ℝⁿ, let S_{m,n} *F* denote distribution of S_{m,n} X_n for X_n ~ *F*. (Note: S_{m,n} *F* = *F*S⁻¹_{m,n}, usual induced distribution)
- Given set M_n, we write set of all induced distributions as

$$\mathbf{S}_{m,n} \mathcal{M}_n = \{\mathbf{S}_{m,n} \, F : F \in \mathcal{M}_n\}.$$



• Sampling scheme **S**_{*m*,*n*} necessary to establish relationship between observation and population.

Sampling mechanism often (almost always) left out of model specification.

• For $m \leq n$ and injection $\psi : [m] \to [n]$, define ψ -sampling $S_{m,n}^{\psi} : \mathbb{R}^n \to \mathbb{R}^m$ by

$$\begin{split} \mathbf{S}_{m,n}^{\psi} &: \mathbb{R}^n \to \mathbb{R}^m \\ & (x_1, \dots, x_n) \mapsto (x_{\psi(1)}, \dots, x_{\psi(m)}). \end{split}$$

- Let Σ_{m,n} be random sampling map obtained by choosing ψ : [m] → [n] randomly and putting Σ_{m,n} = S^ψ_{m,n}. (Distribution of ψ can depend on X_n.)
- Write $\Sigma_{m,n}F$ to denote the distribution of $S_{m,n}^{\psi} X_n$ for this randomly chosen ψ and $X_n \sim F$. Also write

$$\Sigma_{m,n}\mathcal{M}_n = \{\Sigma_{m,n}F : F \in \mathcal{M}_n\}.$$

Definition (Coherence)

A statistical model $(\{\mathcal{M}_n\}_{n\geq 1}, \{\Sigma_{m,n}\}_{n\geq m\geq 1})$ is coherent if

$$\Sigma_{m,n}\mathcal{M}_n = \mathcal{M}_m$$
 for all $n \ge m \ge 1$
induced = specified

Definition (Coherence)

A statistical model ($\{M_n\}_{n\geq 1}, \{\Sigma_{m,n}\}_{n\geq m\geq 1}$) is coherent if

 $\Sigma_{m,n}\mathcal{M}_n = \mathcal{M}_m$ for all $n \ge m \ge 1$.

Suppose $({\mathcal{M}_n}_{n\geq 1}, {\Sigma_{m,n}}_{n\geq m\geq 1})$ is coherent.

- Given data **D** of size $m \ge 1$.
- Estimate \hat{P}_m from \mathcal{M}_m given **D**.
- For $n \ge m$, infer

$$\hat{P}_n = \{F \in \mathcal{M}_n : \Sigma_{m,n}F = \hat{P}_m\}.$$

- * This set is a singleton if model is identifiable.
- For smaller sample size ($\ell \leq m$) estimate

$$\hat{P}_{\ell} = \Sigma_{\ell,m} \hat{P}_m.$$

• Coherence needed to guarantee (i) \hat{P}_n is non-empty and (ii) $\hat{P}_{\ell} \in \mathcal{M}_{\ell}$.

- These basic ideas are mostly ignored/invisible/unknown in the modern literature on network analysis.
- Frank and co-authors studied effects of sampling in social network analysis (1970s, 80s, 90s).
- Importance of sampling (and relevance of context) has not been emphasized in the modern statistics literature until very recently (Crane–Dempsey, 2015).
- Implications of exchangeability also seem to be poorly understood.

Assumed setting:

Population Observed network (sample)

Guiding Question:

How to model network data in the presence of sampling?

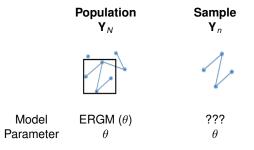
Scenario 1: ERGM as population model

Given any sufficient statistics (T_1, \ldots, T_k) and parameters $(\theta_1, \ldots, \theta_k)$, assign probability

$$\mathsf{Pr}(\mathbf{Y} = \mathbf{y}; \theta, T) \propto \exp\left\{\sum_{i=1}^{k} \theta_i T_i(\mathbf{y})\right\}, \quad \mathbf{y} = (y_{ij})_{1 \le i, j \le N} \in \{0, 1\}^{N \times N}$$

Holland and Leinhardt (1981), Frank and Strauss (1986), Wasserman and Pattison (1996), Wasserman and Faust (1994).

- Typical approach: Estimate θ by fitting ERGM (θ) to Y_n, obtain θ̂_n and use as estimate for θ in population.
- \rightarrow Validity of this step depends on context (i.e., **coherence**).

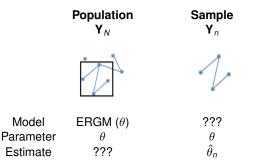


Theorem (Shalizi–Rinaldo)

Model for $S_{n,N}(Y_n)$ is ERGM (θ) if and only if sufficient statistics T have separable increments.

 \implies ({ \mathcal{M}_n } $_{n\geq 1}$, {**S**_{*m*,*n*} $_{n\geq m\geq 1}$) coherent if and only if T has "separable increments" (very strong condition).

In other words, given Y_n ~ ERGM(θ, T), the distribution of S_{m,n} Y_n is also parameterized by 'θ', but distribution of S_{m,n} Y_n is unknown (in general).
 ⇒ Relationship between θ in two models unknown ⇒ Cannot do inference.



Scenario 2: Vertex exchangeable models (graphons)

Let $\phi : [0, 1] \times [0, 1] \rightarrow [0, 1]$ be a function (symmetric).

- Generate U_1, U_2, \ldots i.i.d. Uniform[0, 1].
- Given U_1, U_2, \ldots , generate edges conditionally independently by

$$\Pr(Y_{ij} = 1 \mid U_1, U_2, ...) = \phi(U_i, U_j)$$

$$\Pr(Y_{ij} = 0 \mid U_1, U_2, ...) = 1 - \phi(U_i, U_j).$$

• Outcome $\mathbf{Y} = (Y_{ij})_{i,j \ge 1}$ satisfies

$$\Pr(\mathbf{Y}_n = (y_{ij})_{1 \le i,j \le n}) = \int_{[0,1]^n} \prod_{1 \le i < j \le n} \phi(u_i, u_j)^{y_{ij}} (1 - \phi(u_i, u_j))^{1 - y_{ij}} du_1 \cdots du_n.$$

Y is exchangeable: Y^σ = (Y_{σ(i)σ(j)})_{i,j≥1} =_D Y for all permutations σ : N → N.
 ⇒ distribution of Y assigns equal probability to

(Aldous-Hoover)

Let $\mathbf{Y} = (Y_{ij})_{i,j\geq 1}$ be a vertex exchangeable random graph. Then \mathbf{Y} is a mixture of graphon processes.

(0) Sample φ ~ φ randomly from among functions [0, 1] × [0, 1] → [0, 1].
(1) Given φ, generate **Y** from the graphon model directed by φ.

$$Pr(\mathbf{Y}_{n} = (y_{ij})_{1 \leq i,j \leq n}) = \int_{[0,1]^{2} \to [0,1]} \int_{[0,1]^{n}} \phi(u_{i}, u_{j})^{y_{ij}} (1 - \phi(u_{i}, u_{j}))^{1 - y_{ij}} du_{1} \cdots du_{n} \varphi(d\phi).$$

$$Population \qquad Sample \\ \mathbf{Y}_{N} \qquad \mathbf{Y}_{n}$$

$$\mathbf{Y}_{n}$$

$$\mathbf{Y}_{n}$$

$$Model \qquad graphon (\phi) \qquad graphon (\phi)$$

$$Parameter \qquad \phi \qquad \phi \\ Estimate \qquad \hat{\phi}_{n} \qquad \hat{\phi}_{n}$$

Many real world networks exhibit:

- (A) sparsity/power law
- (B) exchangeability, consistency of finite sample distributions

Fact (Aldous (1981), Hoover (1979), Lovász–Szegedy (2006))

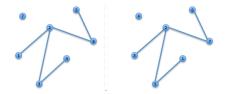
An infinite exchangeable random graph is dense or empty with probability 1.

- \implies Graphons cannot model (A) or (B).
 - Often used to refute vertex exchangeability in networks applications, but empirical properties not even necessary to refute.
 - The assumed context is off.

Implications of exchangeability assumption

Practical purpose of exchangeability assumption:

 Account for arbitrary labels assigned to sampled vertices by assigning equal probability to isomorphic graphs:



• Tractable class of models by incorporating symmetries.

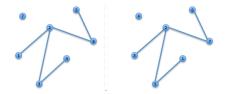
Further implications of exchangeability:

• Also implies sampled vertices interchangeable with unsampled vertices.

Implications of exchangeability assumption

Practical purpose of exchangeability assumption:

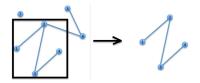
 Account for arbitrary labels assigned to sampled vertices by assigning equal probability to isomorphic graphs:



• Tractable class of models by incorporating symmetries.

Further implications of exchangeability:

• Also implies sampled vertices interchangeable with unsampled vertices.



Entries are sampled uniformly at random from a large database of phone calls (or emails). Each observation (C_i, R_i) contains identity of the caller C_i and receiver R_i on the ith sampled call.

Interested in inferring the structure of connections among users in the database.

Caller	Receiver	Time of Call	
555-7892 (<i>a</i>)	555-1243 (b)	15:34	
550-9999 (<i>c</i>)	555-7892 (<i>a</i>)	15:38	
555-1200 (<i>d</i>)	445-1234 (<i>e</i>)	16:01	
555-7892 (<i>c</i>)	550-9999 (<i>a</i>)	15:38	
:	:	:	·

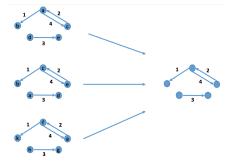
Call sequence $X_1 = (a, b)$, $X_2 = (c, a)$, $X_3 = (d, e)$, $X_4 = (a, c)$ induces network:

vertices	edges
actors	movies
employees	emails
club members	social interactions
Wikipedia admin.	votes
airports	flights
scientists	articles
members	online messages
Websites	hyperlinks
	actors employees club members Wikipedia admin. airports scientists members

- These datasets are driven by interactions
- Edges are the units not represented as a (vertex-labeled) graph

Edge exchangeable models

• Vertices cannot be identified independently of their interactions with other vertices



 Phone calls are sampled uniformly from the database ⇒ exchangeable sequence of pairs (C₁, R₁), (C₂, R₂),....

• Edge-labeled graph contains 'sufficient information' about network structure.

Edge exchangeable models

 Phone calls are sampled uniformly from the database ⇒ exchangeable sequence of pairs (C₁, R₁), (C₂, R₂),

• Edge exchangeable model: Assign same probability to

Edge exchangeability \iff Size-biased vertex sampling

Other practical benefits (Hollywood model):

- Easy for estimation, prediction, and testing questions.
- Sparse with probability 1 for $1/2 < \alpha < 1$.
- Power law with exponent $\alpha + 1$ for $0 < \alpha < 1$.

H. Crane and W. Dempsey. (2016). Edge exchangeable models for interaction networks. Journal of the American Statistical Association, in press.

Harry Crane

- ERGM: none known
- Vertex exchangeable (graphons): representative sample of vertices
- Edge exchangeable: representative sample of edges (size-biased vertices)
- Relational exchangeability: representative sample of relations (Crane–Dempsey, 2016)
- Relative exchangeability: representative sample of vertices subject to heterogeneity in population (Crane–Towsner, 2015). Examples: stochastic blockmodel (Holland and Leinhardt)
- Completely random measures (graphex): representative sample edge patterns with respect to duration of time (Caron–Fox, 2017).

(I) What is a statistical model?

Model = Description + Context 'set' + 'inference rules'

(II) All models are wrong, but some are useful.

First step to being 'useful' is 'making sense'. **Coherence**: Model and inferences 'make sense' in a single context.

(III) Network Modeling:

Sound theory for network analysis should be built on models that are

- (i) coherent and
- (ii) account for realistic sampling schemes.

What is a statistical model?

Model = Description + Context

A statistical model has two components:

- **Descriptive**: M_n set of candidate distributions for each sample size $n \ge 1$.
- Inferential: C context within which different sample sizes are related.

All models are wrong, but some are useful.

First step toward 'usefulness' is 'making sense' (coherence).

- Models aren't 'right' or 'wrong' but rather 'coherent' or 'incoherent'.
- **Coherence**: model $({\mathcal{M}_n}_{n \ge 1}, \mathcal{C})$ 'makes sense' within a single context.
- Coherent models are 'useful' insofar as they 'make sense'.
- After coherence, other practical matters (e.g., computational tractability, accurate context) determined on a case-by-case basis.

Applications to Network Modeling:

Sound theory for network analysis should be build on models that are (i) coherent and (ii) account for realistic sampling schemes.

- Sampling mechanism should be accounted for in the context: edge sampling, hyperedge sampling, path sampling, snowball sampling,
- Current state of affairs: either no sampling context specified or vertex sampling taken as implicit (e.g., Shalizi–Rinaldo, 2013).
- Vertex sampling (selection, simple random sampling) usually not accurate reflection of context.

 \Rightarrow Sound theory for network analysis should be built on models that are (i) coherent and (ii) account for realistic sampling schemes.

- Might this give clearer interpretation to asymptotics in network analysis?
- *H. Crane. (2018).* Foundations and Principles of Statistical Network Modeling. *Chapman–Hall.*
- H. Crane and W. Dempsey. (2017). Edge exchangeable models for interaction networks. Journal of the American Statistical Association.
- H. Crane and W. Dempsey. (2015). A framework for statistical network modeling.