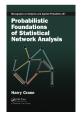
Probabilistic Foundations of Statistical Network Analysis Chapter 4: Generative models

Harry Crane

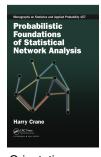
Based on Chapter 4 of Probabilistic Foundations of Statistical Network Analysis



Book website: http://www.harrycrane.com/networks.html

Harry Crane

Table of Contents



Chapter 1

- Orientation
- 2 Binary relational data
- 3 Network sampling
- 4 Generative models
- 5 Statistical modeling paradigm
- 6 Vertex exchangeability
- 7 Getting beyond graphons
- 8 Relative exchangeability
- 9 Edge exchangeability
- 10 Relational exchangeability
- 11 Dynamic network models

- Sampling models (Chapter 3) specified by
 - candidate distributions describing network variation
 - sampling scheme that links the population \mathbf{Y}_N to the sample $\mathbf{Y}_n = \sum_{n,N} \mathbf{Y}_N$
- Generative models (Chapter 4) specified by
 - candidate distributions
 - generative scheme to describe network growth
- Describe generative scheme by an *evolution map*.

Definition

For $n \leq N$, call $P : \{0,1\}^{n \times n} \to \{0,1\}^{N \times N}$ an evolution map if

 $P(\mathbf{y})|_{[n]} = \mathbf{y}$ for all $\mathbf{y} \in \{0,1\}^{n \times n}$.

An evolution map is an operation by which $\mathbf{y} \in \{0, 1\}^{n \times n}$ 'evolves' into $P(\mathbf{y}) \in \{0, 1\}^{N \times N}$ by holding fixed the part of the network that already exists, namely \mathbf{y} .

- Let $\mathcal{P}_{n,N}$ be the set of all evolution maps $\{0,1\}^{n \times n} \to \{0,1\}^{N \times N}$.
- A generating scheme is a random map $\Pi_{n,N}$ in $\mathcal{P}_{n,N}$. Distribution can depend on \mathbf{Y}_n .
- More precisely, Π_{n,N} Y_n is the network with N vertices obtained by first generating Y_n and, given Y_n = y, putting Π_{n,N} Y_n = P(y), for P ∈ P_{n,N} chosen according to the conditional distribution of Π_{n,N} given Y_n = y.
- The distribution of $\Pi_{n,N} \mathbf{Y}_n$ is computed by

$$\Pr(\Pi_{n,N} \mathbf{Y}_n = \mathbf{y}) = \sum_{P \in \mathcal{P}_{n,N}} \Pr(\Pi_{n,N} = P \mid \mathbf{Y}_n = \mathbf{y} \mid_{[n]}) \Pr(\mathbf{Y}_n = \mathbf{y} \mid_{[n]}) \mathbf{1}(P(\mathbf{y} \mid_{[n]}) = \mathbf{y}),$$
(1)

where $\mathbf{1}(\cdot)$ is the indicator function.

Harry Crane

Definition (Generative consistency (Definition 4.1 of PFSNA))

Let \mathbf{Y}_n and \mathbf{Y}_N be random $\{0, 1\}$ -valued arrays and let $\Pi_{n,N}$ be a generating scheme. Then \mathbf{Y}_n and \mathbf{Y}_N are consistent with respect to $\Pi_{n,N}$ if

 $\Pi_{n,N} \mathbf{Y}_n =_{\mathcal{D}} \mathbf{Y}_N,$

for $\Pi_{n,N} \mathbf{Y}_n$ defined by the distribution in (1).

Duality between generative consistency and consistency under selection:

For any \mathbf{Y}_n and generating mechanism $\Pi_{n,N}$, define \mathbf{Y}_N by $\mathbf{Y}_N = \Pi_{n,N} \mathbf{Y}_n$. Then by the defining property of an evolution map, \mathbf{Y}_n and \mathbf{Y}_N enjoy the relationship

 $\mathbf{S}_{n,N} \mathbf{Y}_N = \mathbf{S}_{n,N} \Pi_{n,N} \mathbf{Y}_n = \mathbf{Y}_n$ with probability 1;

that is, \mathbf{Y}_n and $\Pi_{n,N} \mathbf{Y}_n$ are consistent under selection by default.

- Dynamics based on Simon's preferential attachment scheme for heavy-tailed distributions.
- Vertices arrive one at a time and attach preferentially to previous vertices based on their degree.

Formal definition:

- Take m ≥ 1 (integer) and δ > −m (real number) so that each new vertex attaches randomly to m existing vertices with probability increasing with degree.
- Initiate at a graph \mathbf{y}_0 with $n_0 \ge 1$ vertices, which then evolves successively into $\mathbf{y}_1, \mathbf{y}_2, \ldots$ by connecting a new vertex to the existing graph at each step.
- For any y = (y_{ij})_{1≤i,j≤n} and every i = 1,...,n, the *degree* of i in y is the number of edges incident to i,

$$\deg_{\mathbf{y}}(i) = \sum_{j \neq i} y_{ij}.$$

At step n ≥ 1, a new vertex v_n attaches to m ≥ 1 vertices in y_{n-1}, with each of the m vertices v' chosen independently without replacement with probability proportional to

$$\deg_{\mathbf{y}_{n-1}}(\mathbf{v}') + \delta/m.$$

- In keeping with the notation of Section 4.1, let Π^{δ,m}_{k,n}, k ≤ n, denote the generating mechanism for the process parameterized by m ≥ 1 and δ > -m.
- By letting the parameters $n_0 \ge 1$, $m \ge 1$, and $\delta > -m$ vary over all permissible values and treating the initial conditions \mathbf{y}_0 and n_0 as fixed, the above generating mechanism determines a family of distributions for each finite sample size $n \ge 1$, where *n* is the number of vertices that have been added to \mathbf{y}_0 .
- For each $n \ge 1$, this process gives a collection of distributions \mathcal{M}_n indexed by (m, δ) , and each distribution in \mathcal{M}_k indexed by (m, δ) is related to a distribution in \mathcal{M}_n , $n \ge k$, with the same parameters through the preferential attachment scheme $\Pi_{k,m}^{\delta,m}$ associated to the model.
- For any choice of parameter (δ , *m*), we express the relationship between \mathbf{Y}_k and \mathbf{Y}_n , $n \ge k$, by

$$\mathbf{Y}_n =_{\mathcal{D}} \Pi_{k,n}^{\delta,m} \mathbf{Y}_k.$$

Barabási-Albert model (Empirical properties)

Sparsity:

- Let $\mathbf{y} = (\mathbf{y}^{(n)})_{n \ge 1}$ be sequence of graphs $(\mathbf{y}^{(n)})$ has *n* vertices).
- Call y sparse if

$$\lim_{n\to\infty}\frac{1}{n(n-1)}\sum_{1\leq i\neq j\leq n}y_{ij}^{(n)}=0.$$

 Under BA model, (Y_n)_{n≥1} grows by adding one vertex at a time with *m* new edges, so that

$$\frac{1}{n(n-1)}\sum_{1\leq i\neq j\leq n}Y_{ij}=\frac{1}{n(n-1)}(mn+n_0)\to 0\quad \text{as }n\to\infty.$$

• Networks under BA model are sparse with probability 1.

Power law degree distribution:

● For *k* ≥ 1, let

$$p_{\mathbf{y}}(k) = n^{-1} \sum_{i=1}^{n} \mathbf{1}(\deg_{\mathbf{y}}(i) = k).$$

• A sequence $\mathbf{y} = (\mathbf{y}^{(n)})_{n \ge 1}$ exhibits power law degree distribution with exponent $\gamma > 1$ if

 $p_{\mathbf{y}^{(n)}}(k) \sim \gamma^{-k}$ for all large k as $n \to \infty$,

where $a(k) \sim b(k)$ indicates that $a(k)/b(k) \rightarrow 1$ as $k \rightarrow \infty$.

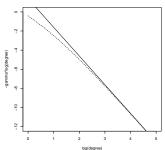
• BA model with parameter (δ , m) has power law degree distribution with exponent $3 + \delta/m$ with probability 1.

Power law and 'scale-free' networks

- Many real-world networks believed to exhibit power law, or nearly power law, degree distribution (Barabási–Albert, ...).
- Heuristic check: power law degree distribution implies

$$\log p_{\mathbf{y}}(k) \sim -\gamma \log(k), \quad \text{large } k \ge 1.$$
 (2)

• Yule–Simon distribution (dotted) vs. line $-3 \log(k)$ (solid).



Power law distribution with exponent 3

Figure: Dotted line shows log-log plot of the Yule–Simon distribution for $\gamma = 3$. Solid line shows the linear approximation in (2) by approximating $\Gamma(\gamma)/\Gamma(k + \gamma) \sim \gamma^{-k}$, which holds asymptotically for large values of *k*.

- Add a new edge at each step (instead of new vertex as in BA model).
- Start with initial graph **y**₀ and evolve **y**₁, **y**₂,... as follows.
 - At step n ≥ 1, choose vertex v_n in y_{n-1} randomly with distribution F_n (which can depend on y_{n-1}). Then draw a random nonnegative integer L_n from distribution also depending on y_{n-1}.
 - Given v_n and L_n , perform a simple random walk on \mathbf{y}_{n-1} for L_n steps starting at v_n .
 - If after L_n steps the random walk is at $v^* \neq v_n$, then add edge between v^* and v_n ; otherwise, add new vertex v^{**} and put edge between v^{**} and v_n .
- Choosing *v_n* by degree-biased distribution on **y**_{*n*-1} and taking *L_n* to be large simulates BA model.
- For more details on these models see Bloem-Reddy and Orbanz (https://arxiv.org/abs/1612.06404), Bollobas, et al (2003), and related work.

 $\mathbf{v} \mapsto \Pi_{n N}^{\theta}(\mathbf{v})$

- Classical Erdős–Rényi–Gilbert model includes each edge in random graph independently with fixed probability θ.
- Generative description: For any θ ∈ [0, 1], define Π^θ_{n,N} as the generating scheme which acts on {0, 1}^{n×n} by

$$\mathbf{y} \mapsto \begin{pmatrix} & & B_{1,n+1} & \cdots & B_{1,N} \\ & & \vdots & \ddots & \vdots \\ & & & B_{n,n+1} & \cdots & B_{n,N} \\ B_{n+1,1} & \cdots & B_{n+1,n} & 0 & \cdots & B_{n+1,N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ B_{N,1} & \cdots & B_{N,n} & B_{N,n+1} & \cdots & 0 \end{pmatrix},$$

which fixes the upper $n \times n$ submatrix to be **y** and fills in the rest of the off-diagonal entries with i.i.d. Bernoulli random variables $(B_{ij})_{1 \le i \ne j \le N}$ with success probability θ .

- Above examples start with a base case \mathbf{Y}_0 , from which a family of networks $\mathbf{Y}_1, \mathbf{Y}_2, \ldots$ is constructed inductively according to a random scheme.
- A generic way to specify a generative network model is to specify a conditional distribution for Y_n given Y_{n-1} such that Y_n|_[n-1] = Y_{n-1} with probability 1.
- Conditional distribution Pr(Y_n = · | Y_{n-1}) determines the distribution of a random generating mechanism Π_{n-1,n} in P_{n-1,n}

 \implies **Y**_n can be expressed as **Y**_n = $\prod_{n=1,n}$ **Y**_{n-1} for every $n \ge 1$.

 Composing these actions for successive values of *n* determines the generating mechanism ⊓_{n,N}, n ≤ N, by the law of iterated conditioning:

$$\implies$$
 Given \mathbf{Y}_n , construct $\mathbf{Y}_N = \prod_{n,N} \mathbf{Y}_n$ by

$$\mathbf{Y}_N = \prod_{N-1,N} (\prod_{N-2,N-1} (\cdots (\prod_{n,n+1} \mathbf{Y}_n))).$$

• The conditional distribution of \mathbf{Y}_N given \mathbf{Y}_n computed by

$$\begin{aligned} &\mathsf{Pr}(\mathbf{Y}_{N} = \mathbf{y}^{*} \mid \mathbf{Y}_{n} = \mathbf{y}^{*} \mid_{[n]}) = \\ &= \mathsf{Pr}(\mathbf{Y}_{N} = \mathbf{y}^{*} \mid \mathbf{Y}_{N-1} = \mathbf{y}^{*} \mid_{[N-1]}) \times \mathsf{Pr}(\mathbf{Y}_{N-1} = \mathbf{y}^{*} \mid_{[N-1]} \mid \mathbf{Y}_{n} = \mathbf{y}^{*} \mid_{[n]}) \\ &= \prod_{i=1}^{N-n} \mathsf{Pr}(\Pi_{N-i,N-i+1}(\mathbf{y}^{*} \mid_{[N-i]}) = \mathbf{y}^{*} \mid_{[N-i+1]} \mid \mathbf{Y}_{N-i} = \mathbf{y}^{*} \mid_{[N-i]}). \end{aligned}$$

Network modeling paradigm (Chapter 5) gives framework to handle sampling models (Chapter 3) and generative models (Chapter 4).

See Chapters 3-5 of Probabilistic Foundations of Statistical Network Analysis

