
Chapter 1

Orientation

In recent years there has been an explosion of network data — that is, mea-
surements that are either of or from a system conceptualized as a network —
from seemingly all corners of science. (Kolaczyk [106])

Empirical studies and theoretical modeling of networks have been the subject
of a large body of recent research in statistical physics and applied mathemat-
ics. (Newman and Girvan [83])

Networks have in recent years emerged as an invaluable tool for describing
and quantifying complex systems in many branches of science. (Clauset, Moore
and Newman [38])

Prompted by the increasing interest in networks in many fields [...]. (Bickel
and Chen [19])

Networks are fast becoming part of the modern statistical landscape. (Wolfe
and Olhede [155])

The rapid increase in the availability and importance of network data [...].
(Caron and Fox [32])

Network analysis is becoming one of the most active research areas in statis-
tics. (Gao, Lu and Zhou [79])

Networks are ubiquitous in science. (Fienberg [74])

Networks are ubiquitous in science and have become a focal point for discus-
sion in everyday life. (Goldenberg, Zheng, Fienberg, and Airoldi [84])

“Networks are everywhere”

There is currently no shortage of interest in ‘network science’, ‘network data’, ‘com-
plex networks’, or just about anything else that invokes the term ‘network’; see, e.g.,
recent popular books on the topic [13, 151]. In writing this book, I have done my
part in furthering this trend; and in reading it, so have you. But as it was never my
intention to become part of the networks hype—a hype reflected in the quotes at the
top of this page—I do not set out here to celebrate the importance of network sci-
ence or its great ‘successes’ in better understanding the complexities of our world.
To the contrary, while I acknowledge the potential of network science for gaining
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better insights about complex data structures and the systems that produce them, I
also recognize that this potential has not yet been realized. Especially within statis-
tics, the study of ‘networks’ has been greatly limited by a lack of appreciation for
the complexity of ‘network data’ and a lack of creativity in developing new ways to
think about those complexities. By now these limitations are woven so deeply into
the fabric of statistical thinking that overcoming them is easier done by starting a
new fabric, rather than modifying the existing one. So, in addition to clarifying the
current limitations of statistical network analysis (in Chapters 1–4 and 6–7), I set
out here along a new path with the hope of catching a glimpse of what lies ahead.
And while certain parts of this book (e.g., Chapters 5, 8–11) do represent substantial
progress in this direction, I make no claim to overcome all of these limitations here.

With these objectives in mind, this book is not intended as a survey of existing
models or a catalog of currently available techniques for analyzing network data.
The book is instead a perspective on how to better represent, model, and think about
complex, heterogeneous data structures that arise in modern applications. The current
ways of doing things, and their various extensions, are insufficient for this purpose.
I discuss some early attempts at gaining such a new perspective throughout Chapters
7–11, but surely the future of statistical network analysis lies almost entirely beyond
these pages, in a yet-to-be-celebrated breakthrough.

In venturing beyond the conventional graph-theoretic representation of networks
and its associated random graph models, I am confident that the later chapters are
a step in the right direction. But just as it is wrongheaded to believe that the cur-
rent graph-theoretic convention is the ‘correct’, ‘best’, or ‘only’ way to think about
network data, it would be foolish to suggest that any of these new approaches is ab-
solutely superior to more conventional methods. To be sure, there are ways in which
these new approaches provide a better perspective on network data of a certain kind.
For example, the perspective of edge exchangeability (Chapter 9) allows us to ex-
press and extract properties from interaction data that standard vertex-centric ap-
proaches cannot. Such an expansion of the prevailing mindset, regardless of whether
it proves ‘useful’ in any practical domain, is necessary to broaden the scope of statis-
tical thinking beyond the traditional paradigm. Continued sharpening of perspective
and enrichment of mindset, far beyond what came before and what lies within these
pages, motivates everything that follows.

1.1 Analogy: Bernoulli trials

Network analysis is no more about studying Facebook, or Twitter, or the loyalties
of karate club members [161] than classical statistics is about tossing coins. And
yet, the theory of coin tossing, as formalized by infinite sequences of independent,
identically distributed (i.i.d.) Bernoulli trials, lays the groundwork for much of clas-
sical statistical theory; see, e.g., [71]. For an analogy, coin tossing is to the statistical
analysis of simple, unstructured data as networks are to the statistical analysis of
complex, dependent data:

coin tossing : unstructured data :: network analysis : complex, structured data.
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From this analogy, I make a few initial observations.
First, just as i.i.d. Bernoulli trials are an entry point into classical statistics,

through the law of large numbers, central limit theorem, etc., so too is network
modeling an entry point into modern complex data analysis. Much like the classi-
cal theory of statistical inference is erected on the scaffolding of the i.i.d. sequence,
the modern theory of inference from complex data will be built on the probabilistic
foundations of statistical network analysis.

Second, instead of heralding the ubiquity of ‘networks’, as in the opening quo-
tations, we would be better off recognizing the emergence of complexity in modern
data science, where ‘complexity’ is used here to mean dependence, structure, hetero-
geneity, and the like. At present, networks are the primary vehicle for representing
complex data structures and network analysis is the predominant method for under-
standing complexity, dependence, and heterogeneity.

Third, given the ubiquity of complexity and its many forms, statisticians can no
longer rely on a limited toolbox of classical techniques and old ideas. New founda-
tions for the statistical analysis of complex data must be forged; and these founda-
tions cannot be derivative on the classical theory of linear models, i.i.d. sequences,
etc. The newness of modern networks problems is paradigm-shifting, and thus war-
rants a shift in the paradigm within which we think about, discuss, and analyze such
data. I clarify this point of view in the coming several pages, with special focus on
the statistical foundations of network analysis, where they currently stand and where
they are headed.

Probabilistic Foundations of Statistical Network Analysis emphasizes modeling
(as a verb, the act of specifying a model), not models (the noun, those models which
already exist). The reasons are manifold:
• One, the act of modeling should be thought of as an act of imposing structure

on the data (and thus on the world). One does not simply choose a model from
an existing class of acceptable choices. One instead posits a model, and in doing
so declares how the data behaves and how that behavior fits into a bigger pic-
ture. Classical statistics, which deals primarily with data having little or no inter-
nal structure (i.e., sequences and sets), has conditioned the statistician to behave
rather lazily when choosing a model. Since there is little structure in many classi-
cal datasets, the act of modeling involves little more than identifying a family of
probability distributions to describe a (nearly) structureless collection of measure-
ments. (To be clear, I am not claiming that classical data sets lack structure; rather,
I am observing that their conventional representation, most often as sets of points
in Rd , and the models chosen to describe them, e.g., often i.i.d. or exchangeable
models, tend to minimize the impact of this structure on data analysis.) When
dealing with structured data—and in the case of network data, the structure is the
data—the act of imposing structure (via modeling) should be taken much more
seriously.

• Two, most of the network models that already exist are inadequate for modern
network data structures. They do not live up to their name as ‘models’ in the vast
majority of situations. We encounter several examples throughout Chapters 2 and
6–8.
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• Three, even though existing network models (i.e., stochastic blockmodels, expo-
nential random graph models, graphons) are known to suffer serious drawbacks
for modern applications, their appearance throughout the theoretical and applied
literature remains pronounced. I have no desire to continue this trend.

• Four, a major reason for the continued use of these limited models seems to be a
general lack of interest in positing new ones. The canonical statistics curriculum
focuses primarily on the analysis and application of standard models (Binomial,
Poisson, Gaussian, Exponential) but without emphasizing the principles that make
these models ‘good’ in any given situation. Rather than fret over the technicalities
and nuances of constructing better models, students and researchers are instead
indoctrinated with the Boxian trope, “All models are wrong, but some are useful”
[26], without any clarity as to why models are ‘wrong’ or what makes them ‘use-
ful’. With Box’s proverb comes the demotion of models and modeling, and the
elevation of estimation, prediction, approximation, and computation.
Perhaps the Boxian proverb does little harm in the classical paradigm, where laws

of large numbers, the central limit theorem, and asymptotic approximations abound.
But it is untenable within the emerging paradigm of network analysis, in which there
are few reliable asymptotic results; and those asymptotic results that do exist are hard
to make sense of, e.g., minimax rates for graphon models, consistency properties for
stochastic blockmodels and exponential random graph models, and asymptotic spar-
sity properties of so-called ‘sparse graphon’ models (Section 7.2). Bear in mind: the
model is what the researcher puts in. Everything else is either given (i.e., data) or de-
rived (i.e., inferred). The choices made while modeling—how one chooses to ‘look
at’ and ‘think about’ the data—are most critical to determining whether the resulting
inferences are ‘useful’, in Box’s parlance. As I emphasize with the statistical mod-
eling paradigm of Chapter 5, whether the result of an analysis ‘is useful’ or ‘makes
sense’ or ‘is valid’ cannot be assessed solely on whether the estimators are unbiased,
consistent, efficient, etc., as these diagnostics are meaningless unless grounded by an
internally coherent model. No matter how much statistical inference is presented as
an ‘objective’ approach to data analysis, modeling is undoubtedly a subjective and
personal activity. And so it ought to be taken personally.

With the discussion below, I hope more than anything else to restore modeling to
its role at the center of the statistical paradigm, bridging the divide between data col-
lection and inference. Along the way I will carefully consider Box’s admonition—to
employ models that are ‘useful’—along with other foundational topics (i.e., symme-
try and exchangeability) at the heart of statistical inference. For the most part, I have
chosen to deemphasize technical aspects of network analysis in favor of high-level
concepts, both in the remainder of this chapter and throughout the book. For the rest
of this opening chapter, I discuss the guiding principles of statistical network analysis
at a high level. Although the technical aspects of this chapter are light, the concepts
are subtle, and are essential in order to appreciate the core ideas motivating this book.
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1.2 What it is: Graphs vs. Networks

In these pages, the term ‘network’ refers to a specific instantiation of what can be
vaguely understood as ‘complex data’. But even in the specific case of ‘network
data’, it is important to distinguish between the fundamental objects of study (i.e.,
networks) and the conventional mathematical representation of those objects (i.e.,
graphs). The distinction between networks and graphs marks the initial divergence
between the perspective put forward here and the prevailing ‘networks-as-graphs’
perspective found throughout the literature.

To be clear: networks are not graphs. A graph is a mathematical object consisting
of a set of vertices V and a set of edges E ⊆V ×V . This mathematical concept can be
extended in several ways to allow for multiple edges, hyperedges, and multiple lay-
ers, but all of these objects, i.e., graphs, multigraphs, hypergraphs, multilayer graphs,
etc., are mathematical entities. They are also distilled entities, in that they can be
discussed independently of any presumed statistical or scientific context. From this
point of view, graphs can be regarded as a ‘syntax’ for communicating about network
data. But this graph-theoretic syntax is just one language with which to communi-
cate about networks. And like any language, it is limited in what it can express. In
becoming too attached to this one language for talking about networks, we limit the
nature of insights that can be gleaned from network data. A sure sign of progress in
the foundations of network analysis is the development of new ways to express and
understand network data. See Chapters 9 and 10 for one such new approach.

A network, on the other hand, is an abstract concept referring to a system of inter-
related entities. For us, the concept of ‘network’ is neither concrete nor well-defined,
but rather is vague and amorphous, emerging from an intuitive judgment about per-
ceived structure in an observed system. For example, import-export partnerships be-
tween countries, social relationships among high school students, patterns in phone
call activity, connectivity among Internet servers, and interactions among genes all
invoke the concept of a network of relationships or interactions in a particular con-
text. Although it is sometimes reasonable to represent these networks mathematically
as graphs, the systems are not graphs in themselves. For example, the Internet is a
physical structure consisting of wires, servers, and routers. A graph is a set V to-
gether with another set E ⊆ V ×V . The physical Internet invokes the concept of a
‘network’, and some aspects of it can be represented or modeled as a graph, but the
Internet is not a graph.

Moving beyond graphs

The reader who has read the word ‘network’ and every time envisioned a ‘graph’
faces a steep unlearning curve to appreciate the richness of structure encoded in the
concept of ‘network’. If there is to be progress in understanding complex, structured
data, then the conventional ways of thinking about ordinary, unstructured data—the
data sequences and arrays that fill statistics textbooks—must be purged from mem-
ory, or at least demoted from their default status in data analysis. To think about
networks properly, one must strongly resist any temptation to embed networks in Eu-
clidean space, or use the terms ‘network’ and ‘graph’ interchangeably, or any similar
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such urge to impose the flat view of data taken by classical statistics on the volumi-
nous and rich structure which the concept of network calls into being.

Though I strongly advocate this point, it is with great regret that almost all of
the ‘networks’ discussed in this book are treated as ordinary ‘graphs’, an exception
being the important class of edge and relationally exchangeable network models in
Chapters 9 and 10. This antithetical presentation can be explained by the extraordi-
nary primitiveness in the current state of affairs. The concept of ‘network data’ is
itself a very special case—the base case—of what can be understood as ‘complex
data’. The mathematical language of graph theory studies the even more restricted
class of ‘networks’ which can be represented as pairs (V,E) consisting of a set V of
vertices and a set E ⊆V ×V of edges. The recent proposal of edge-labeled networks
(Chapter 9) breaks free of this traditional view and inspires hope for expanding the
scope of ‘network analysis’ beyond what is currently conceivable, but there is still a
long way to go.

1.3 How to look at it: Labeling and representation

Think of statistical analysis as the act of discerning the nature of some large, com-
plex object in a dark room. You only have a flashlight, which can illuminate just a
small piece of that object. In this analogy, the illuminated piece is the data on which
your inference about the large, unobservable object is to be based. Different angles
of shining the flashlight can be understood as different ways of looking at, or rep-
resenting, the data. For example, the representation of a network as a vertex-labeled
graph (Figure 1.1(b)) corresponds to the shadow cast by shining the light from one
angle; the edge-labeled graph (Figure 1.1(c)) is the shadow cast from a different an-
gle. Both are shadows of the same object, namely Figure 1.1(a), but the angle from
which the light is shone (i.e., the perspective from which the data is viewed) affects
which attributes are visible and which are obscured, and thus which inferences the
data supports and which it does not.

Because in many classical applications there is just one canonical angle from
which to look at the data, it is easy to overlook the role played by ‘perspective’ in
complex data analysis. In a sequence, for example, the measurements X1,X2, . . . con-
tain the primary information. Changing the ‘angle’ from which we shine our prover-
bial flashlight on this data (e.g., by converting pounds to kilograms, or feet to inches)
does not change the nature of the measurements X1,X2, . . .. But the significance of
this ‘angle’ cannot be overstated when handling networks and other complex data
structures. In these latter instances, the structure is the data, and different aspects of
this structure may be visible depending on the angle from which the light is shone.

In practice, this ‘angle’ is manifested first and foremost in how the network is
represented, for which the choice of labeling is a basic consideration. In Figure 1.1,
for example, the ‘unlabeled’ structure in Figure 1.1(a) is the object of interest. Ideally,
we would treat this ‘unlabeled’ structure as the data and analyze it directly, but this is
not possible. Unlabeled structures cannot be treated as data because unlabeled objects
cannot be represented. To analyze data one must be able to talk about it; and to be
able to talk about something, one must assign names to whatever parts of that thing
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Figure 1.1 Two perspectives on network data. (a) Represents the essential structure of ‘unla-
beled’ network data. (b) Represents the structure in (a) by assigning labels to its vertices (i.e.,
vertex-centric perspective). (c) Represents the structure in (a) by assigning labels to its edges
(i.e., edge-centric perspective).

are being discussed. For networks, this ‘naming’ comes in the form of labeling the
constituent parts of the data. Without such a labeling, we cannot even utter a word.

To make this point clear, realize that the object in Figure 1.1(a) merely represents
the abstract notion of an unlabeled network. But the object itself is labeled by the spa-
tial orientation of its edges and vertices on the page. This spatial orientation allows
one to speak (i.e., ‘utter’) about this network by referring to the relative positions
of vertices/edges, e.g., by pointing or describing the positions in words. Mathemati-
cally, such ‘unlabeled’ structures are typically represented by ‘removing the labels’
and working with a class of structures that are equivalent up to relabeling. But the
appropriate notion of equivalence itself depends on the perspective from which two
networks are to be treated as ‘equivalent’. For example, the equivalence class of
vertex-labeled networks (as in Figure 1.1(b)) differs from the equivalence class of
edge-labeled networks (as in Figure 1.1(c)), because the corresponding notions of
equivalence differ based on the chosen perspective. Which perspective is appropriate
for a given application depends on the context.

1.4 Where it comes from: Context

Given the diverse scenarios in which networks arise, there can be no single ‘cor-
rect’ approach to network analysis. Instead, what makes ‘network analysis’ relevant
to a given problem depends on the context. And this context should be accounted
for at every stage of the analysis, beginning with the way in which the data is rep-
resented, continuing through model specification, and culminating in inference. As
emphasized in the previous section: the representation of network data reflects the
perspective from which it is being analyzed, which in turn determines what infer-
ences can be drawn from the analysis. To elicit the best available insights from the
data, we want to shine our flashlight (i.e., represent and model the data) from the
optimal angle, and the optimal angle in any given application depends crucially on
the context.

Consider the structures in Figure 1.1. Do they represent the same network? Per-
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haps. Assuming they do represent the same network, do they provide the same rep-
resentation of that network? Of course not. Figure 1.1(a) represents the ‘shape’ of
the network, without explicitly identifying any of its other components, e.g., ver-
tices or edges. Figure 1.1(b) identifies each vertex with a distinct label. Figure 1.1(c)
identifies each edge with a distinct label, leaving vertices unlabeled. But what’s the
difference? The difference, we will see throughout the coming chapters, is a matter of
perspective. In labeling the vertices, Figure 1.1(b) asserts a ‘vertex-centric’ view of
the shape in Figure 1.1(a), and this vertex-centric view differs from the ‘edge-centric’
point of view taken in Figure 1.1(c). Even though these may be different representa-
tions of the same network, the choice of representation reflects the perspective of the
data analyst and the context of the application, both of which affect inference.

1.5 Making sense of it all: Coherence

There are primarily two aspects to network modeling. The model first describes the
observed data from the perspective of the statistician. And then, to draw inferences
beyond the observed data, the model specifies a context in which to interpret the data.
With this, the model has two components:
• a descriptive component consisting of the family of candidate probability distri-

butions for describing variability in the observed data, and
• an inferential component explaining how the observed data fits into a larger con-

text.
Both components are essential to proper model specification and sound statistical
inference.

Returning to the Boxian proverb, “All models are wrong, but some are useful,”
I regard ‘making sense’ as the first step towards ‘being useful’. To make sense, the
inferences based on the model should be interpretable within a single (coherent)
context. This observation culminates in the formal concept of coherence, by which
the description of the model ‘fits coherently’ into its context in a sense made precise
in Definitions 5.2–5.3. (See Chapter 5 for a more formal discussion of coherence and
its significance for statistical inference.)

Beyond coherence, there are often practical considerations regarding whether or
not the presumed context is suitable, or whether the specified model can actually
be used (i.e., computed) in a given application. But such practical matters should
be considered only after minimal logical conditions, such as coherence, are met.
Without coherence, any computational or practical techniques which enhance the
analysis are of little use, precisely because the model which they will have enhanced
does not make sense.

1.6 What we’re talking about: Examples of network data

Throughout these pages, we will encounter a number of scenarios under which dif-
ferent modeling considerations are appropriate. Whenever possible, I try to motivate
these scenarios by real (or realistic) applications for which canonical examples al-
ready exist. I survey some of these common scenarios below. For the most part, these
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examples are not interesting on their own, and are offered here only to illustrate how
basic principles of network analysis arise in practice.

1.6.1 Internet

Several early developments in network science grew out of empirical observations
taken on the Internet, defined as the network of servers and systems connected by
physical wires. Of all the datasets discussed here, the Internet is one of the only ‘real’
networks in the sense that it corresponds to an actual physical object. Explaining the
observed power law structure in sampled data from the Internet and World Wide Web
was one of the primary motivations for Barabási and Albert’s preferential attachment
model (Section 4.2). The widespread empirical observations of power law degree
distribution, both in the Internet and other real-world networks, remains one of the
most evocative illustrations of the effects of sampling on network analysis, which
have been mostly overlooked until recently [52, 54, 112, 127, 154]. I discuss the role
of sampling further in Chapter 3.

Because of its physical nature, the Internet network invokes a notion of ‘ground
truth’ that is absent from other familiar applications in network science. For example,
community detection in social networks seeks an optimal clustering of vertices into
(disjoint) communities based on their network connectivity. As the concept of ‘social
network’ is itself a nebulous one, in many cases there is no ‘true’ division of vertices
against which to assess the inferred clustering. (A notable exception is the karate
club network of Zachary [161], see Section 1.6.3. But in modern network analysis,
the karate club network is treated more as a meme than as a serious dataset.1)

1.6.2 Social networks

In social network analysis, vertices represent individuals and edges represent social
ties between their adjacent vertices. The network does not correspond to anything
physical, as in the Internet, but rather represents invisible social forces driving in-
teractions within a population, e.g., shared recreational interests, common political
views, or professional relationships. I discuss some scenarios of social network mod-
eling in Chapters 2, 3, 6, 7, and 8.

1.6.3 Karate club

The karate club dataset [161] records social interactions among 34 members of a
university karate club for the three-year period spanning 1970–1972. Represented
as a network with multiple edges, each vertex corresponds to a different member of
the club and each edge corresponds to a different social interaction between the cor-
responding club members. Since all club members have been observed, the dataset

1Since 2013, the ‘Zachary Karate Club Club’ (ZFCC) trophy has been presented, as a joke, at various
conferences to the speaker who first mentions the karate club network in his or her presentation. See
http://networkkarate.tumblr.com/ for more information.
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exhibits no vertex sampling or growth. Zachary’s initial analysis highlighted the di-
vision of members into two factions, caused by a rift between the club’s two leaders.
This known separation of its vertices makes the karate club network a canonical
testbed for community detection methods. The standard analyses of the karate club
also demonstrate a common pitfall of network analysis, which I discuss further in
Section 9.10.

1.6.4 Enron email corpus

The Enron email corpus [104] consists of email activity for 150 employees at the
Enron corporation. The dataset contains not only information about the senders
and recipients of emails but also textual content, timestamps, etc.2 Most relevant
for our purposes is the network structure induced by the exchange of emails be-
tween employees, which we construct by letting each edge correspond to a different
email in the corpus. An important difference from the karate club network (Sec-
tion 1.6.3) is that a single edge (i.e., email) can involve more than two vertices (i.e.,
sender/recipient). For example, an email sent from employee A to employees B, C,
and D corresponds to a single (hyper)edge in the network representation. Interaction
networks such as this and the collaboration networks discussed next are the subject
of Chapters 9 and 10.

1.6.5 Collaboration networks

Collaboration networks between actors [104, 134], scientists, authors, and other com-
munities of professionals have much in common with the above Enron dataset. In an
actors network, for example, each actor corresponds to a different vertex and each
movie corresponds to a different edge consisting of the set of all vertices whose as-
sociated actors play a role in that movie. A common feature of the karate club, Enron,
and collaboration networks is their growth by sequential addition of new edges, in
the form of interactions, as opposed to sequential addition of new vertices, as in the
preferential attachment model (Section 4.2). This feature of interaction networks fig-
ures prominently in Crane and Dempsey’s framework of edge exchangeability (see
[54] and Chapters 9–10).

1.6.6 Blockchain and cryptocurrency networks

Cryptocurrencies, such as Bitcoin [10, 122], Ethereum [29], and RChain [40], com-
bine several innovative ideas in an effort to revolutionize economic activity through
the use of peer-to-peer networks, blockchain technology, and smart contracts. These
‘digital currencies’, e.g., Bitcoin, operate on a blockchain, which records all trans-
actions in a ‘ledger’ that stores the complete history of all Bitcoin transactions.
This ledger is maintained by a distributed peer-to-peer network, which updates the
blockchain by adding blocks according to a majority voting consensus protocol. Peer-
to-peer networks also play an important role in decentralizing control of the network

2See http://www.cs.cmu.edu/˜enron/ and [131] for some applications involving this dataset.



WHAT WE’RE TALKING ABOUT: EXAMPLES OF NETWORK DATA 11

away from a centralized authority toward a distributed collection of nodes in the net-
work. All of these components come together to create a complex network of trans-
actions between addresses on the blockchain. As this revolutionary new technology
matures, blockchain data should serve as a fertile testbed for model development at
the frontiers of complex data analysis.

1.6.7 Other networks

In addition to the above examples, there are networks from social media platforms
such as Facebook and Twitter [18, 117], brain networks [82], gene regulatory net-
works, telecommunications networks, wireless sensor networks [100, 101], etc. All
of these are just a small selection of the many structures that are now referred to
as ‘network data’. Because I focus in this book on establishing the foundations of
network analysis, I do not undertake any detailed application of a particular network
dataset. These examples do, however, provide concrete modeling ‘scenarios’ within
which to discuss different modeling approaches. The ‘scenarios’ accompanying each
new class of models are meant to provide additional context for the more technical
aspects of network analysis covered throughout the text.

1.6.8 Some common scenarios

As the scope of networks expands to encompass problems in new disciplines, so too
must the mathematical and statistical techniques available to address these problems.
I conclude this section with a brief review of some of the basic contexts for network
modeling in social science, epidemiology, and national security. In the near future,
it seems inevitable that the relevance of networks will continue to expand to include
a wider range of disciplines as human behaviors and complex systems become ever
more entangled through the growth of the Internet, social media, and other emergent
technologies, such as blockchain.

Social science. Social network analysis was the primary domain of statistical net-
work analysis until the mid-1990s. By all known accounts, the study of social net-
works began with Moreno’s invention of the sociogram in 1930 [121]. Still today,
many common network models (e.g., stochastic blockmodels (SBMs) [89] and ex-
ponential random graph models (ERGMs) [78, 90]) were originally motivated by
sociological applications. With the growth of online communities and social media
as a way to consume and disseminate information, traditional social networks have
given way to networks with much more complex structure than traditional social
network models, namely SBMs and ERGMs, are equipped to handle.

Epidemiology. Stochastic process models for disease spread on networks garner
substantial interest in applied probability and statistical physics. The now classical SI
(susceptible-infected), SIS (susceptible-infected-susceptible), and SIR (susceptible-
infected-recovered) models describe how infections spread in a population whose
interactions are represented by a graph. In the SIR model, for example, each node
fluctuates among three states: susceptible to infection (S), infected (I), or recovered



12 ORIENTATION

(R). As time evolves, infected individuals randomly transmit the disease to their sus-
ceptible neighbors. Infected individuals recover, and are henceforth immune from
infection, according to another random process. Basic questions center around how
the different combinations of network structure and disease dynamics affect disease
spread. For example, given certain initial conditions, what is the probability of an epi-
demic, i.e., the disease spreads to a non-negligible fraction of the population? One
can also imagine how such models could be useful for designing effective advertising
strategies or for modeling how information percolates through social networks.

National security. Networks arise in national security in at least two different ways.
There are physical networks, such as the Internet, the U.S. Power Grid, and the trans-
portation network of roads, bridges, and highways, all of which must be protected
against failure or targeted attack. In fact, many experts [37] now regard cyberspace
as the primary battlefield of modern warfare and national security, making resilience
to targeted network attacks critical to national security interests. These concerns over
cybersecurity, and the role of network science in resolving them, will continue to
grow as more economic and social activity transitions to cyberspace.

Non-physical networks also play a role in national security, as terrorist organi-
zations rely on complex webs of social, financial, and political interactions in order
to evade detection [135]. As long as critical national infrastructure is controlled by
a centralized, bureaucratic government, the governed society is vulnerable to both
external attacks (e.g., hacking) and internal attacks (e.g., leaks), both of which have
become increasingly prevalent and widely publicized in recent times. As a coun-
termeasure to the vulnerability and antiquity of centralized authority, blockchain
technology and cryptocurrencies (Section 1.6.6) distribute control of currency and
other critical information to a “trustless” peer-to-peer network [10, 122]. The use of
networks for this purpose is likely to have potential national security implications
moving forward.

1.7 Major open questions

The probabilistic foundations of statistical network analysis currently face a few ma-
jor open questions that are worth keeping in mind over the coming chapters.

1.7.1 Sparsity

Early interest in network science grew out of several concurrent empirical ob-
servations of sparsity and so-called ‘scale-free’ structure in real-world networks
[1, 5, 14, 70, 111, 113]. (Refer to Chapters 4, 7, and 9 for a more detailed discussion
of sparsity and power law, i.e., scale-free, properties.) For present purposes, it is suf-
ficient to interpret ‘sparsity’ to mean that the network has few connections relative
to its size. For example, when represented as a graph with n vertices, a network is
sparse if it has a negligible number of edges compared to the number n2 of all pos-
sible edges. In statistics, sparsity draws interest for two competing reasons, which
together capture the tension between empirical properties of network data and log-
ical principles of statistical modeling. First, many sparse networks are observed to
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be well-connected as a result of heterogeneous patterns of connectivity (e.g., ‘scale-
free’ structure). So while the network is in one sense poorly connected (because it
is sparse), it is at the same time well-connected (because of its complex patterns).
Second, the prevailing approaches to network modeling (e.g., stochastic blockmod-
els, graphons, and exponential random graph models) are unable to account for these
observed empirical behaviors. These competing elements of network modeling have
stalled progress in statistical network analysis for nearly a decade, primarily due to
unrecognized limitations of conventional approaches. Chapters 9–10 present one at-
tempt to address this challenge, which interested readers are encouraged to build
upon.

1.7.2 Modeling network complexity

In addition to sparsity, other heterogeneous features of real-world networks, such
as power law degree distributions, clustering, and the ‘small-world’ property [152],
confound attempts to analyze network data with standard models. In this opening
chapter, I have emphasized the need for new tools to conceptualize the complexity
of modern data structures. Above all, we seek to work with the complexity of net-
work data, rather than fight against it by reducing complexity to something with less
structure. This latter attitude of ‘flattening’ network structure is common through-
out statistical analysis, and especially in network community detection, where non-
overlapping subsets (i.e., communities) are sought to provide a ‘low resolution’ sum-
mary of much richer network structure. Community detection has become a cottage
industry among statisticians interested in network analysis, but it is mostly coun-
terproductive for understanding data complexity. I discuss models for community
detection in the context of relative exchangeability (Chapter 8).

1.7.3 Sampling issues

Understanding the impact of sampling is one of the longest standing challenges in
modern network science. Empirical observations of power law degree distribution in
the Internet and other real-world networks [1, 5, 14, 70, 111] raise the question of
whether these observed properties reflect the actual network structure or are merely
an artifact of sampling bias [112, 154]. This question is of central importance to sta-
tistical network analysis, for which the mode of sampling establishes the essential
link between observed and unobserved parts of the network needed for inference.
But even as interest in network analysis has grown among statisticians, there has not
been much effort to incorporate sampling into the theoretical foundations of the sub-
ject. Much of the work on network analysis promoted by flagship statistics journals
consists of asymptotic results and standard analyses under models that are known to
be inadequate for most serious applications (e.g., graphons, stochastic blockmodels,
and exponential random graph models). Remarkably few of these analyses acknowl-
edge the importance of sampling to network analysis; and those that do, e.g., [138],
assume a stylized form of sampling by vertex selection (Section 3.2) which does not
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even remotely resemble the way in which real-world networks are sampled. I discuss
these issues at length throughout Chapters 3–5, and again in Chapters 6 and 9.

1.7.4 Modeling network dynamics

While much of this book is dedicated to modeling single instances of a network, there
is emerging interest in analyzing dynamic network data, such as temporal observa-
tions of brain activity and social media interactions. But so far statistical work on
dynamic networks is mostly confined to theory and applications for the temporal ex-
ponential random graph model or other ad hoc approaches. Because network dynam-
ics add another dimension to the already challenging problem of network modeling,
the foundations of dynamic network analysis are even more technically and concep-
tually challenging than their non-dynamic counterpart. Chapter 11, in which I give a
brief non-technical overview of some otherwise technical work from the stochastic
processes literature [44, 48, 57], offers a potential starting point for a more general
theory of dynamic network modeling. More in depth coverage of dynamic network
analysis is beyond the scope of this book and is left as a topic worthy of its own book
length treatment.

1.8 Toward a Probabilistic Foundation for Statistical Network Analysis

In this opening chapter I have laid out a vision for network analysis as the foundation
for what I am calling complex data analysis. As of yet, this vision has not been
realized, but it is my hope in this book to clarify the major tenets underlying this
vision and, if possible, to light the path toward its ultimate fulfillment. If nothing
else, I hope to convince readers that real progress in the analysis of complex data
will be limited as long as the field continues to seek incremental advances within
the networks-as-graphs orthodoxy. The ideas in Chapters 5 and 9–11 offer some first
attempts to get beyond these limitations, but many challenges still lie ahead.
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