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Abstract 

We introduce belief hedges, which combine a properly chosen set of events whose 

uncertain subjective beliefs neutralize each other. They protect against unknown 

probabilities in ambiguity measurements, resulting in ambiguity indexes that improve 

virtually all preceding ones. Unlike predecessors that were only shown to be valid 

under one theory, our indexes are valid under all popular ambiguity theories. This 

frees practitioners from the choice overload given the many existing theories. Our 

indexes are directly observable for application-relevant events, with increased 

descriptive validity by not requiring expected utility for risk or two-stage 

optimization. Belief hedges make ambiguity theories widely applicable. 

 

JEL-Classification: D81, C91 

Keywords: Subjective beliefs; Ambiguity aversion; Ellsberg paradox; Sources of 

uncertainty 

  

                                                

1 A first draft of this paper was entitled: “Balanced Design: The Key to Measuring Ambiguity Attitudes 

when Beliefs Are Unknown.” 
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1. Introduction 

Hedging is a central concept in finance. Uncertain monetary outcomes (“gambles”) 

are turned into certainties without using any further information about the relevant 

uncertainties. A hedge, instead, combines a properly chosen set of gambles so that 

their uncertainties neutralize each other, whatever they are. This paper introduces an 

analog for subjective beliefs, called belief hedges. A well-known problem in the 

measurement of ambiguity
2
 attitudes is that there is uncertainty about the subjective 

beliefs of a decision maker, and these beliefs may confound the measurement. A 

belief hedge combines a properly chosen set of events so that their uncertain 

subjective beliefs neutralize each other, whatever they are. Thus, we can measure 

ambiguity attitudes without needing any further information about the relevant beliefs. 

We can now directly handle real-life uncertainties that are relevant for applications, 

with no more need to resort to artificial events such as Ellsberg urns or experimenter-

specified probability intervals. This increases external validity, and the motivation of 

clients and subjects. Using our belief hedges, we will introduce general indexes of 

ambiguity aversion and insensitivity. 

 In an experiment on time pressure, Baillon et al. (2018) were the first to measure 

ambiguity attitudes without needing information about subjective beliefs. Their 

primary aim was to simplify Abdellaoui et al’s (2011) source method. Their approach 

only works for three-fold partitions, and no (theoretical) justification was given. We 

show that their domain is a special case of a belief hedge. This provides a theoretical 

justification for their approach. We remove their restriction of three-fold uncertainty, 

providing the warranted flexibility for applications (Examples 4, 12, and 19). We 

identify the relevant general concepts (belief hedges and indexes) through necessary 

and sufficient axioms, and show that these concepts are justified by underlying 

econometric principles. Section 7 gives further details on our contribution to Baillon 

et al. (2018).  

                                                

2 Ambiguity refers to uncertain events for which no probabilities are known. Risk refers to the case of 

known probabilities. 



 3 

 We show that our indexes do not only generalize those of Baillon et al., but most 

other indexes proposed in the literature as yet.
3
 Thus, our indexes are not only valid 

under the source method, but also under many existing ambiguity theories. This is 

desirable given that there are over a dozen of ambiguity models.
4
 Unlike their 

predecessors, our indexes do not need expected utility for risk, or two-stage stimuli 

and dynamic decision principles, making them descriptively valid and tractable. Our 

indexes operationalize existing ones in the following sense. Most existing indexes use 

theoretical constructs
5
 such as nonadditive measures or sets of priors in their 

definition. This means that they are only indirectly observable. Our indexes can 

directly be elicited from preferences, with no need for data fitting or the additional 

assumptions it requires (choice of an error model and of a parametric specification). 

They thus show, in particular, how the indexes in the literature can be made directly 

observable.  

 A detailed outline is as follows. Unlike preceding papers, the first part of this 

paper does not commit to any ambiguity model when introducing our indexes. This 

absence underscores that our indexes do not involve parametric fittings, and can 

directly be revealed from preferences. In the absence of a decision model, the first 

part of our paper can only provide intuitive plausibility arguments. We use 

econometric concepts to do so. Following basic definitions (§2.1), §2.2 introduces 

belief hedges for ambiguity aversion, and a corresponding aversion index—an 

average ambiguity premium. This section, while elementary, already conveys the 

main novelty of belief hedges, explaining why they make artificial ambiguities (e.g. 

Ellsberg urns) redundant. Section 2.3 presents the same result for a second index of 

ambiguity, capturing insensitivity. This index is mathematically more complex but 

empirically useful. It reflects changes in aversion rather than aversion itself. It 

captures, for instance, by how much the decision maker underestimates the marginal 

benefits of prevention. 

                                                

3 Baillon et al. (2018) referred forward to the present paper for this result. 

4 References are in Online Appendix OA.1. Throughout this paper, OA.x refers to a literature survey in 

§x in Online Appendix OA. 

5 Theoretical constructs are not directly observable, but derive their empirical meaning indirectly in 

combination with other theoretical constructs (such as utility), and only within some assumed model 

(Cozic and Hill 2015). 
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 Section 2.4 shows theoretically that our two indexes properly reflect aversion and 

insensitivity, and that the indexes concern distinct, orthogonal, components in the 

variance in our data. Section 3 gives tractable examples of belief hedges and a 

preference foundation of our indexes. It shows that belief hedges provide practitioners 

with the required flexibility and feasibility to tackle complex empirical problems. 

 The second part of this paper, starting in §4, does consider various ambiguity 

models. It first presents an extension of our indexes to many outcomes. In general, our 

indexes may be outcome dependent. They can serve as useful tools to examine this 

dependence in models where ambiguity attitudes indeed depend on outcomes, such as 

the smooth model. Section 5 considers the special case of outcome independence, 

which includes many existing ambiguity models such as biseparable utility, rank-

dependent/Choquet expected utility, prospect theory, and multiple priors.  

 Section 6 shows that our indexes generalize and unify most indexes proposed 

before. For example, Dow and Werlang (1992) and Schmeidler (1989) proposed an 

index of ambiguity aversion using their nonadditive weighting function in Choquet 

expected utility, and assuming expected utility for risk. Under their assumptions, their 

weighting functions coincide with our matching probabilities and their index 

coincides with our aversion index. Our index remains valid, though, if expected utility 

for risk is violated (which is desirable for empirical purposes; Bruhin, Fehr-Duda, and 

Epper 2010), and also for ambiguity models other than Choquet expected utility. Our 

indexes also agree with the common qualitative orderings of ambiguity attitudes 

proposed in the literature, such as being more ambiguity averse. Because of the 

compatibility of our indexes with existing indexes and orderings, the arguments 

advanced in the literature for those indexes and orderings support our indexes. This 

gives a broad theoretical support to the intuitive claims made in the first part of this 

paper. It shows that our indexes capture the proper general components of ambiguity 

attitudes. The main mathematical surprise in this study was to find that most existing 

ambiguity indexes and orderings can be based on the same underlying econometric 

principles, explained in §3. This ensures conceptual soundness and good statistical 

performance. 
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2. Belief hedges 

This section defines belief hedges and provides theoretical justifications. 

 

2.1. Basic definitions 

 𝑆 denotes a state space, finite or infinite. Its subsets are events. 𝑋 denotes a set of 

outcomes, finite or infinite. Outcomes can be money amounts, health states, and so on. 

Acts map 𝑆 to 𝑋 and are finite-valued.
6
 Act 𝛾𝐸𝛽 assigns outcome 𝛾 to event 𝐸 and 

outcome 𝛽 to all other states. We further assume that lotteries 𝛾𝑝𝛽 (receiving outcome 

𝛾 with probability 𝑝 and 𝛽 with probability 1 − 𝑝) are available. We use the term 

prospect for both acts and lotteries. A preference relation ≽ is given over prospects, 

with the usual notation ≼, ≻, ≺, and ∼. We assume weak ordering throughout 

(completeness and transitivity). As usual, we identify constant acts and degenerate 

lotteries with outcomes. This implies 𝛾 = 𝛾𝑆𝛽 = 𝛾1𝛽, and ≽ now also applies to 

outcomes. An event is null if its outcomes never affect preference. Monotonicity 

means: (i) weakly improving an outcome of a prospect weakly improves the prospect; 

(ii) strictly improving an outcome of an act in a nonnull event strictly improves the 

act; (iii) strictly improving an outcome of a lottery with positive probability strictly 

improves the lottery. 

 A measurement design ℋ is a finite collection of events. It describes the events 

that will be used to formally define, or experimentally measure, the ambiguity 

indexes. A central question in our analysis will be which designs are suited for this 

purpose. In most of this paper (except §3) ℋ is fixed, and then dependencies on it 

need not be expressed in notation. By {𝐸1, … , 𝐸𝑛}, the design atoms, or atoms for 

short, we denote the smallest nonempty intersections of events in ℋ. Belief hedging, 

defined later, will imply that the atoms partition 𝑆, covering all states. The 𝐸𝑗s are the 

“atoms” of the smallest (finite) algebra of events generated by ℋ. For 𝐸 ∈  ℋ, |𝐸| 

denotes the number of atoms contained in 𝐸. The Greek nu (𝜈) denotes the normalized 

event size, or event size for short, with 𝜈(𝐸) =
|𝐸|

𝑛
; thus, 𝜈(𝑆) = 1. Section 3 analyzes 

                                                

6 We can endow 𝑆 with an algebra of events containing all singletons {𝑠}, and consider only 

measurable acts. Then nothing in this paper changes. 
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to what extent our indexes depend on the design (and, thus, on 𝜈). Under empirically 

plausible assumptions the indexes are largely independent. Limitations will be 

discussed. 

 Throughout this paper, statistics refer to ℋ, with the following notation for 

functions 𝐹, 𝐺: ℋ → ℜ. 𝐸(𝐹) =  𝐹 =
∑ 𝐹(𝐸)𝐸∈ℋ

|ℋ|
 denotes average; 𝑉𝑎𝑟(𝐹) denotes 

variance; 𝐶𝑜𝑣(𝐹, 𝐺) denotes covariance of 𝐹 and 𝐺. Thus, all these statistics are to be 

taken over ℋ. Details are in Appendix A. We define the sensitivity of 𝐹 with respect 

to 𝐺 as  
𝐶𝑜𝑣(𝐹,𝐺)

𝑉𝑎𝑟(𝐺)
. It is a first-order approximation of how much 𝐹 will change on 

average if 𝐺 changes by one unit. 

 
2.2. Belief hedging for ambiguity aversion 

 Sections 2 and 3 introduce and analyze our concepts under minimal assumptions. 

Thus, these sections assume: 

 

ASSUMPTION 1 [Two outcomes]. 𝑋 = {𝛾, 𝜃}, with 𝛾 ≻ 𝜃.  □ 

 

 Dimmock, Kouwenberg, and Wakker (2016 Theorem 3.1) showed that matching 

probabilities (defined next) are well suited to analyze ambiguity attitudes because, 

under many ambiguity models, they capture everything relevant to ambiguity 

attitudes. There is no need to measure risk attitudes, utilities, probability weighting, 

and so on. Our indexes will also be based on them. We thus assume that a matching 

probability 𝑚(𝐸) exists for every event 𝐸, defined by 

  𝛾𝐸𝜃~ 𝛾𝑚(𝐸)𝜃 . (1) 

Monotonicity implies that 𝑚 is unique. Ambiguity reflects how 𝑚(∙) deviates from a 

probability measure. For example, ambiguity aversion will imply 𝑚(𝐸) + 𝑚(𝐸𝑐) < 1, 

violating additivity. 

 We summarize the structural assumptions for the entire paper: 

 

ASSUMPTION 2 [Structural Assumption]. ≽ is a monotonic weak order over acts 

(finite-valued measurable maps from 𝑆 to 𝑋) and lotteries (two-valued probability 

distributions over 𝑋). Each event has a matching probability.  □ 
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 In this and the next section we use a general framework where, besides 

Assumption 1, only Assumption 2 is made. Hence, the results here hold for virtually 

all ambiguity models considered today. 

 

DEFINITION 3. ≽ is ambiguity neutral if 𝑚 is a probability measure.  □ 

 

Ambiguity neutrality effectively means that subjective beliefs are treated the same 

way as objective beliefs. Observation 17 will show that the condition for two fixed 

outcomes as defined here implies general ambiguity neutrality under many ambiguity 

models.Ambiguity neutrality is violated in the following example. We chose it 

because it refers to an existing experiment. As a price to pay, it involves some game-

theoretic details. 

 

EXAMPLE 4  [Running Example]. The decision maker plays the following two-player 

minimum effort coordination game from Goeree and Holt (2001) in the version 

analyzed theoretically by Eichberger and Kelsey (2011). The players have to 

simultaneously and independently choose an effort level from 

{115, 125, 135, 145, 155, 165}, being act 𝑓 or 𝑓𝑗  for the decision maker and state 𝑠 or 

𝑠𝑗 for her opponent, at marginal cost 𝑐 = 0.9. They then receive the outcome 

min{𝑓, 𝑠} − 𝑐 × 𝑒, where 𝑒 denotes own effort level. Optimal for the decision maker 

is to choose the same effort level as her opponent, but she does not know this level. 

 In our imaginary variation, we assume that we also observe the decision maker’s 

matching probabilities through the following indifferences:
7
 

15𝑠1
0 ~ 150.500;  that is, 𝑚(𝑠1) = 0.50; 

15𝑠2
0 ~ 15𝑠3

0 ~ 15𝑠4
0 ~ 15𝑠5

0 ~ 150.200;  that is, 𝑚(𝑠2) = ⋯ = 𝑚(𝑠5) = 0.20;  

15𝑠6
0 ~ 150.300;  that is, 𝑚(𝑠6) = 0.30; 

0𝑠1
15 ~ 05515;  that is, 𝑚(𝑠1

𝑐) = 0.45; 

0𝑠2
15 ~ 0𝑠3

15 ~ 0𝑠4
15 ~ 0𝑠5

15 ~ 00.3015;  that is, 𝑚(𝑠2
𝑐) = ⋯ = 𝑚(𝑠5

𝑐) = 0.70; 

                                                

7 Such side measurements are commonly incentivized by means of a random incentive system that 

enhances isolation, avoiding income effects, hedging effects, and interactions between the game played 

and the side measurement (Chierchia, Nagel, and Coricelli 2018). 
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0𝑠6
15 ~ 00.3515; that is, 𝑚(𝑠6

𝑐) = 0.65.  

The decision maker violates ambiguity neutrality as 𝑚 is not a probability measure, 

violating additivity. For instance, 𝑚(𝑠1) + 𝑚(𝑠1
𝑐) = 0.95 < 1. 

 We will illustrate the techniques of our paper for this example in what follows, 

and summarize and discuss the results in Example 19.  □ 

 

 To measure ambiguity aversion, several papers used differences 𝑃(𝐸) − 𝑚(𝐸), 

where 𝑃 denotes subjective probabilities reflecting ambiguity-neutral beliefs, called a-

neutral probabilities.
8
 These differences reflect an ambiguity premium, i.e., 

willingness to pay—in probability (belief) units—to avoid ambiguity. The bigger the 

aversion, the bigger this premium (Viscusi and Magat 1992; Dimmock, Kouwenberg, 

and Wakker 2016). Ideally, with some observations 𝑃(𝐸) − 𝑚(𝐸) available for a 

number of events 𝐸, we would like to define our aversion index as the average level 

of differences 

 𝑃 − 𝑚 . (2) 

The aforementioned references considered Ellsberg urns, where 𝑃 could be derived 

from symmetry assumptions. For natural events the problem is that we do not know 

the a-neutral 𝑃. In Example 4, it need not agree with the actual choice percentages in 

Table 1, as those were unknown to the decision maker.  

 

TABLE 1. Choice percentages in Goeree and Holt (2001) 

𝑠1 = 115 𝑠2 = 125 𝑠3 = 135 𝑠4 = 145 𝑠5 = 155 𝑠6 = 165 

  50 18   5   7   5 15 

 

Our solution is simple: we ensure, through Definition 5 below, a fixed and known 

average level of 𝑃: 

 𝑃 =
𝟏

𝟐
 for all 𝑃. (3) 

                                                

8 They can be interpreted as the beliefs of the ambiguity neutral twin of the decision maker, i.e., the 

beliefs if the decision maker changed into ambiguity neutral but in all other respects remained the 

same. 
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To prepare for the concept relevant here (belief hedges), we present a condition that is 

not only sufficient, but also necessary, for Eq. 3: 

 

DEFINITION 5. ℋ is level-hedged, or l-hedged for short, if: 

 each state 𝑠 appears in exactly half of the events in ℋ. (4) 

 

 Equivalent is that each atom 𝐸𝑖 appears in exactly half of the elements of ℋ (can 

be seen via any 𝑠 ∈ 𝐸𝑖). This implies 𝑃 = 1/2, first for all degenerate probability 

measures assigning probability 1 to 𝐸𝑖, and then for all their convex combinations, 

i.e., for all 𝑃. For applications, the most tractable special case is when ℋ is 

complementation closed.
9
 We multiply 𝑃 − 𝑚 =

1

2
− �̅� by 2 for normalization 

explained later: 

 

DEFINITION 6. If l-hedging (Eq. 4) holds, then the index of ambiguity aversion is 

 𝑏 =   1 − 2�̅� . (5) 

 

This way, by using l-hedging, we have captured Eq. 2 without needing to know 𝑃. 

The index reflects how much success probability one is willing to give up to avoid 

ambiguity. In the Anscombe-Aumann framework (expected utility) this reflects the 

proportion of success-utility one is willing to pay. For moderate stakes and 

approximately linear utility, 𝑏 then is the proportion of the gain one is willing to pay 

to avoid ambiguity. In Example 4, we have the data for ℋ containing all singletons 

and their complements, which satisfies l-hedging. We get 𝑏 = 0.08, suggesting weak 

ambiguity aversion. Note that, because of l-hedging, this is the average ambiguity 

premium 𝑃 − 𝑚 for every probability measure 𝑃 on 𝑆, and this is why we need not 

know 𝑃. 

                                                

9 However, this condition is not necessary and sufficient to serve in our axiomatization. For instance, it 

is violated if 𝑆 contains seven states and ℋ contains all three- and six-state events. Then l-hedging still 

holds. 
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 The analysis in this section was simple from an algebraic perspective. But 

because of it, there is no more need to rely on Ellsbergian informational symmetry of 

the events to measure ambiguity aversion, once we have ensured l-belief hedges 

through the measurement design ℋ, and we can directly use the application-relevant 

events. This will increase both validity and the motivation of subjects and clients. 

 

2.3. Belief hedging for insensitivity 

 Theoretically and normatively motivated ambiguity models have focused on 

ambiguity aversion, a motivational component of ambiguity attitude.However, recent 

empirical studies have found richer phenomena (Anantanasuwong et al. 2020; 

l’Haridon et al. 2018; Kocher, Lahno, and Trautmann 2018). Whereas for likely 

events there indeed is strong ambiguity aversion, it gets weaker for events of 

moderate likelihood, and for low likelihood events it reverses. Then ambiguity 

aversion even predicts in the wrong direction (Trautmann and van de Kuilen 2015).
10

 

 The aforementioned likelihood dependence shows a general drift towards fifty-

fifty, with insufficient discriminatory power and insufficient responsiveness toward 

belief changes in the middle region. It is a similar kind of insensitivity as exhibited by 

inverse-S probability weighting for risk, where weights in the middle are also moved 

toward fifty-fifty (Fehr-Duda and Epper 2012), but now it concerns ambiguity 

attitudes. We incorporate this effect as a second component of ambiguity attitude, and 

interpret it to be cognitive, an interpretation supported by Anantanasuwong et al.’s 

(2020) large-scale empirical study of a representative sample of financial investors. 

This component reflects lack of understanding of ambiguity, which comes prior to any 

aversion or seeking. The decision maker takes ambiguous events (too much) as one 

blur. We use the term a(mbiguity-generated) insensitivity to refer to the insensitivity 

generated by ambiguity. 

 This section explains our measurement of the second component, again 

independently from beliefs, which is similar to the preceding section but 

mathematically more involved. Ideally, we would like to use the most common 

measure of responsiveness of 𝑚 with respect to 𝑃, being the sensitivity 

                                                

10 These phenomena are reflected for losses, leading to a four-fold pattern. Overall, for losses there is 

more ambiguity seeking than aversion. Reflection can readily be accommodated by reflecting our 

parameters for losses or using dual functionals there. We focus on gains in this paper. 
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𝐶𝑜𝑣(𝑚,𝑃)

𝑉𝑎𝑟(𝑃)
. (6) 

This index has been widely used as the slope in regressions, and as 𝛽 in the CAPM 

model in finance. It captures the average derivative of 𝑚 with respect to 𝑃 (in our 

domain of nonextreme events), i.e., the average change in 𝑚 if 𝑃 changes by one unit. 

 In the 𝜀-contamination model, a tractable subclass of 𝛼-maxmin multiple priors 

models, our insensitivity index coincides with the size of the set of priors (§6.3). In 

general, the larger the set of priors (perception of ambiguity), the more events are 

treated alike, as one blur, corresponding to lower discriminatory power. That is, there 

is more insensitivity. In the extreme case where the set of priors contains all priors, all 

nontrivial events 𝐸 are treated the same way, with all 𝛽𝐸𝛼 indifferent and with, 

indeed, maximal insensitivity. Section 6 provides similar results for other popular 

ambiguity theories, where insensitivity is often interpreted as perception of ambiguity. 

Our insensitivity index shows a way to directly measure this based on revealed 

preferences. 

 To measure our insensitivity index, the problem we face is, again, that the a-

neutral 𝑃 is unknown. Our solution is to ensure that we can replace 𝑃 by the event 

size 𝜈 (as if 𝑃 were uniform over atoms), irrespective of what 𝑃 is (as long as it is 

plausible).  The intuition is to ensure that the event size properly reflects the average 

probability 𝑃 (over events of the same size) in the sense that they perfectly co-vary 

with each other. The following condition is necessary and sufficient for this purpose. 

 

DEFINITION 7. ℋ is v(ariation)-hedged if: 

 ∑ 𝜈(𝐸)𝐸∋𝑠  is the same for each fixed state 𝑠. (7) 

This condition requires that the total size of events containing each fixed state 𝑠 (i.e., 

containing each atom 𝐸𝑖, through any 𝑠 ∈ 𝐸𝑖), is a constant. One can verify that it is 

satisfied in Example 4, where the sum of event sizes is 26 for each 𝑠. This condition is 

crucial in ensuring that the approximation in Eq. 8 below is proper. We provide an 

intuitive interpretation here, leaving the derivation to Appendix A—all proofs in this 

paper are given in the appendix.  

 Intuitively, v-hedging ensures that each state 𝑠 and, hence, each atom 𝐸𝑖 (through 

any 𝑠 ∈ 𝐸𝑖) appears equally often in big events and, accordingly (by Eq. 4), in small 



 12 

events. Therefore, shifting belief between states/events in 𝑆, does not lead to more 

total belief for big events (or, correspondingly, to less total belief for small events) in 

ℋ. In Example 4, one can verify that the total belief for all small events of size 1/6 is 

always 1 and the total belief for all big events of size 5/6 is always 5, no matter what 

𝑃 is. Our conditions ensure that the total belief is the same for each belief, including 

𝜈. Hence, the extent to which the sum of 𝑚 over- or underweights big or small events 

in ℋ cannot be due to beliefs, and it must reflect attitude. That beliefs do not matter 

and may as well be assumed to be 𝜈 justifies the following approximation of 

sensitivity of 𝑚 with respect to 𝑃 by sensitivity of 𝑚 with respect to 𝜈. Appendix A 

shows that Eq. 8 provides a good first-order approximation under common 

econometric assumptions. Proposition 21 there will derive exact equality in some 

cases, implying good fit in all empirically plausible cases. 

   
𝐶𝑜𝑣(𝑚,𝑃)

𝑉𝑎𝑟(𝑃)
 ≈

𝐶𝑜𝑣(𝑚,𝜈)

𝑉𝑎𝑟(𝜈)
. (8) 

 For Eq. 8, we need one more assumption, to avoid degeneracy: 

 

ASSUMPTION 8 [nondegeneracy]. ℋ does not contain ∅ or 𝑆. All atoms 𝐸𝑗 are 

nonnull.𝜈 is not constant on ℋ.  □ 

 

Regarding the first part of the assumption, insensitivity concerns intermediate events 

away from the extremes and, hence, we exclude the extreme events.
11

 This entails no 

loss of information because the 𝑚 values of ∅ and 𝑆 are 0 and 1, respectively, by 

monotonicity. As for the second part of the Assumption, null events do not affect 

preference and, hence, can be made to disappear from the atoms by joining them with 

a nonnull atom (with the obvious adaptation of ℋ). This second part further serves to 

stay away from extreme events. For the final part, because we derive insensitivity 

from variations in event size, we need event size to be nonconstant—also after 

excluding ∅ and 𝑆. This implies 𝑛 ≥ 3. The condition ensures that 𝑉𝑎𝑟(𝜈) is positive, 

                                                

11 In the terminology of Wakker (2010 §7.7), we focus on the insensitivity region. Boundary 

restrictions can be used to define this region. Because our theorems are valid irrespective of what those 

regions are, we do not discuss them in this paper. For applications, we recommend not using events in 

the measurement design with a-neutral probabilities below 0.05 or above 0.95. 
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so that the ratios are well-defined. ℋ is a belief hedge, or hedge for short, if both l-

hedging and v-hedging hold.  

 

DEFINITION 9. If Assumption 8 and belief hedging (Eqs. 4 and 7) hold, then the index 

of a(mbiguity-generated) insensitivity is 

 𝑎 =   1 −   
𝐶𝑜𝑣(𝑚,𝜈)

𝑉𝑎𝑟(𝜈)
 . (9) 

Recall that 𝐶𝑜𝑣 and 𝑉𝑎𝑟 concern variation within ℋ and can be calculated exactly 

from the matching probability data collected for all events in ℋ. Eq. 10 below gives a 

simple special case of Eq. 9 that can readily be calculated using paper and pencil. 

Whereas the aversion parameter captures how much probability is lost due to 

ambiguity, the insensitivity index captures the part of changes in probability lost due 

to ambiguity (away from the extreme likelihoods). It thus captures the degree of 

underreaction to new information, and is relevant, for instance, in evaluations of 

precautionary measures. An index a = 0.43 (as in Example 4) means that the decision 

maker underestimates the marginal benefits of precautionary measures by a factor of 

almost 2. 

 Throughout the rest of the paper we assume that Assumptions 2 and 8 hold, 

explicitly in theorems and implicitly elsewhere. We, finally, return to our aversion 

index. The beginning of this section indicated that the prevailing empirical finding for 

unlikely events is ambiguity seeking. Hence, had we mainly used unlikely events in 

ℋ, e.g. the singletons in Example 4, then the average 𝑃 − 𝑚 would have been small 

or even negative, underestimating ambiguity aversion. Using mainly likely events in 

ℋ would overestimate ambiguity aversion. L-hedging has avoided such biases by 

taking average event-size 1/2. 

 

2.4. Theoretical justifications of belief hedges 

 We first show formally that our indexes classify ambiguity neutrality and, 

accordingly, ambiguity aversion/seeking and (in)sensitivity properly, and that they 

have been properly normalized, facilitating comparisons across studies. The following 

theorem also shows that belief hedges are not only sufficient, but also necessary, for 

our purposes.  
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THEOREM 10. Under Assumptions 1, 2, and 8, 𝑏 = 𝑎 = 0 for all ambiguity neutral 

decision makers if and only if the measurement design ℋ is a belief hedge. Then the 

supremum value of both 𝑏 and 𝑎 is 1.
12

  □ 

 

 Psychologically, we interpret aversion and insensitivity as two distinct 

components of ambiguity attitudes. This interpretation is supported by an 

orthogonality—in the usual Euclidean sense as used for instance in statistical analyses 

of variance (Appendix B)—of the indexes. Although conceptual orthogonality need 

not preclude any empirical relation, Anantanasuwong et al. (2020) found 

orthogonality empirically in this case. 

 

THEOREM 11. Under Assumptions 1, 2, and 8, the indexes 𝑎 and 𝑏 capture orthogonal 

components of the variance of the data.  □ 

 

3. Which design to use and a preference foundation 

Baillon et al.’s (2018) experiment assumed three nonnull atoms {𝐸1, 𝐸2, 𝐸3} and a full 

design ℋ = {𝐸1, 𝐸2, 𝐸3 , 𝐸1 ∪ 𝐸2, 𝐸1 ∪ 𝐸3, 𝐸2 ∪ 𝐸3} denoted ℋ(𝐸1, 𝐸2, 𝐸3). We write 

𝑚𝑠 =
𝑚(𝐸1)+𝑚(𝐸2)+𝑚(𝐸3)

3
 and  𝑚𝑐 =

𝑚(𝐸1∪𝐸2)+𝑚(𝐸1∪𝐸3)+(𝐸2∪𝐸3)

3
. They used the 

following definitions which, by substitution (Online Appendix OB) are identical to 

ours: 

  𝑏 = 1 − 𝑚𝑐 − 𝑚𝑠  and  𝑎 = 3 (
1

3
− (𝑚𝑐 − 𝑚𝑠)) .  (10) 

 We next give some other tractable examples of belief hedges. ℋ is a belief hedge 

if for every 𝑖 < 𝑛, every state (a) appears equally often in an event of size 𝑖; and (b) it 

does so with overall frequency 
1

2
. This includes all cases where l-hedging holds and ℋ 

satisfies symmetry with respect to the atoms: for all 𝑖 ≠ 𝑗 and all 𝐸𝑖 , 𝐸𝑗 ∈ ℋ: if an 

event in ℋ contains 𝐸𝑖 but not 𝐸𝑗, then that event with 𝐸𝑖 replaced by 𝐸𝑗 is also 

                                                

12 Monotonicity excludes constancy of 𝑚. If we relax this condition then the supremum values can 

occur as maxima: 𝑏 = 1 if 𝑚 is constant 0 and 𝑎 = 1 for any constant 𝑚. 
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contained in ℋ. This is satisfied if ℋ is the full design, i.e., contains all unions of 𝐸𝑗s 

except 𝑆 and ∅, as with ℋ{𝐸1, 𝐸2, 𝐸3}. It is also satisfied if ℋ is the basic design, i.e., 

contains all one-atom events and their complements. Further, disjoint unions of belief 

hedges are always belief hedges again.  

 The examples show that there is much flexibility in belief hedges. The smallest 

one possible results from a three-fold partition of 𝑆 and then a full design, being the 

design of Baillon et al. (2018). Simplicity goes at the cost of reliability though, and 

the richer ℋ is, the more reliable and valid the estimated indexes will be. As default 

we recommend a basic design with a partition of 𝑆 that specifies all relevant 

uncertainties
13

, such as the six possible effort levels of the opponent in Example 4. 

This design involves all relevant atoms, considers likely and unlikely events (where 

ambiguity is strongest), and grows linearly with the number of atoms so that it is 

tractable. A big pro of the basic design, as well as richer designs, is that we get 

enough equalities to also estimate subjective beliefs (Example 19). In many situations, 

especially if analyzing real-world data sets, one may not have much control over the 

data received, and then the flexibility of general belief hedges is useful. 

 In the basic design of Example 4 one could, at will, add {{𝑠1, 𝑠2, 𝑠3}, {𝑠4, 𝑠5, 𝑠6}} 

there, or any other pair of disjoint three-state events. Such additions are desirable if 

some such events are of special relevance, or are expected to show deviating behavior 

(see Example 12 below). One can further select events for being easy to relate to for 

the subjects and for avoiding biases. For the sake of brevity, this theoretical paper 

leaves experimental implementations, and applications to real-world data sets, to 

future studies. 

 In general, different designs need not give the same indexes, as the following 

example shows. 

 

EXAMPLE 12. Consider an Ellsberg urn with 90 balls numbered 1-90, the first 30 red, 

the last 60 black or yellow in unknown proportion. For 𝐸1 (red), 𝐸2 (non-red and odd), 

𝐸3 (non-red and even), the corresponding design ℋ(𝐸1, 𝐸2, 𝐸3) will suggest 

                                                

13 Preferably, this does not involve very many events, not only for tractability reasons, but also to stay 

away from very extreme a-neutral probabilities below 0.05 or above 0.95, as recommended elsewhere 

in this paper. 
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ambiguity neutrality with 𝑏 = 𝑎 = 0. However, for 𝐸1 (red), 𝐸2 (black), 𝐸3 (yellow), 

the corresponding design ℋ(𝐸1, 𝐸2, 𝐸3) will give deviations from neutrality. Our 

indexes signal that ambiguity aversion and insensitivity are not uniform here. The 

basic design with the six combinations of odd/even and color is needed to obtain the 

average aversion/insensitivity over all events.  □ 

 

 Ambiguity is too rich a domain to expect that one ambiguity attitude for a 

decision maker can cover all events. There can be many kinds of (source) preferences 

and (lacks of) understanding of uncertainty beyond risk, where emotions and 

confusions play a role beyond the degree to which probabilities are known or 

unknown (Tversky and Fox 1995). Ambiguity attitudes depend on sources of 

uncertainty similarly as utility functions depend on commodities (Cappelli et al. 

2018). Our indexes can serve as tools to examine such dependencies and emotions, 

and this concerns a large and important topic for future research. We next investigate 

when different designs do give the same indexes. 

 

DEFINITION 13. The indexes perfectly fit if every measurement design ℋ gives the 

same indexes.  □ 

 

 The following property characterizes perfect fit: 𝑚 is neo-additive if there exist a 

probability measure 𝑃 on 𝑆, 0 ≤ 𝜎 ≤ 1, and 0 ≤ 𝜏 ≤ 1 − 𝜎 such that 

 𝑃(𝐸) = 0  ⇒   𝑚(𝐸) = 0; 

 0 < 𝑃(𝐸) < 1 ⇒   𝑚(𝐸) = 𝜏 + 𝜎𝑃(𝐸);  

   𝑃(𝐸) = 1 ⇒   𝑚(𝐸) = 1. (11) 

We call 𝑊 neo-additive if the three implications in Eq. 11 hold with 𝑊 instead of 𝑚, 

where furthermore 𝜎 > 0 and all 𝑃(𝐸𝑖) > 0 (to satisfy monotonicity
14

). Under 

Assumptions 1, 2, and 8, and neo-additivity of 𝑚 (Eq. 11), substitution (Online 

Appendix OB) gives: 

                                                

14 This also avoids some open mathematical problems in Chateauneuf, Eichberger, and Grant (2007), 

concerning nonnecessity of null event consistency in their Theorem 5.2 and inconsistency between null 

events in bets on and bets against events under their maximal pessimism. 
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 𝑏 = 1 − 2𝜏 − 𝜎   and   𝑎 = 1 − 𝜎. (12) 

 As is common in axiomatizations, we assume complete information about 

preferences. That is, we consider all measurement designs and use 𝑚 for all events.
15

 

And, as common in axiomatizations, we assume a continuum domain (Dietrich 2018 

pp. 18-19). We do so through the following conditions of Villegas (1964). We say that 

𝑚 is fine
16

 if for each nonnull event 𝐴 there exists an event 𝐵 ⊂ 𝐴 such that 𝑚(𝐴) >

𝑚(𝐵) > 0. For any 𝑃, 𝑃 is fine if the same holds for 𝑃 instead of 𝑚. Event-continuity 

holds if: (i) whenever a nested sequence 𝐴1 ⊃ 𝐴2 ⊃ 𝐴3 ⊃ ⋯ converges to ∅ and 

𝑚(𝐵) > 0, there exists a 𝐽 such that 𝑚(𝐴𝑗) < 𝑚(𝐵) for all 𝑗 ≥ 𝐽, and (ii) whenever a 

nested sequence 𝐵1 ⊂ 𝐵2 ⊂ 𝐵3 ⋯ converges to 𝐵 and 𝑚(𝐵) > 𝑚(𝐴), there exists a 𝐽 

such that 𝑚(𝐵𝑗) > 𝑚(𝐴) for all 𝑗 ≥ 𝐽. 

 

THEOREM 14
17

. Under Assumptions 1, 2, and 8, the following two statements are 

equivalent: 

(i) 𝑚 is neo-additive and the corresponding probability measure 𝑃 is fine 

(“atomless”
18

) and countably additive. 

(ii) Our indexes perfectly fit and 𝑚 is fine and event-continuous.  □ 

 

By monotonicity, 𝑚 in (i) is strictly increasing in 𝑃; i.e., 𝜎 > 0. The literature has 

documented several appealing properties of the neo-additive model (Eichberger, 

Grant, and Lefort 2012 p. 238 penultimate paragraph). Theorem 14 provides another 

one. In particular, it shows a new way to test the neo-additive model. 

 The rest of this section discusses (limitations of) applicability of our indexes. 

Theorem 14 is empirically reassuring because the neo-additive model performs well 

                                                

15 So far we, in fact, only used 𝑚 on one fixed measurement design. 

16 We avoid the common term atomless because the term atom is used in reference to ℋ in this paper. 

In the presence of the assumed event-continuity, our condition is equivalent to Savage’s (1954) 

fineness. Generalizations that allow for atoms may be possible using Mackenzie’s (2019) 

generalization of Villegas (1964). 

17 To avoid some Banach-Kuratowski-Ulam impossibility results, measure-theoretic structure can be 

added in this theorem, where the set of events is a 𝜎-algebra. 

18 Here, atoms refer to 𝑆. In all the rest of the paper, they refer to ℋ. 
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empirically which, together with its tractability, has made it popular. In particular, it 

captures the empirically prevailing four-fold pattern of ambiguity aversion 

(Trautmann and van de Kuilen 2015). If the neo-additive fit is not perfect, then our 

indexes can serve as pragmatic estimates, similarly as linear regressions and CRRA 

indexes are often used pragmatically. We next discuss similar limitations of our 

indexes. 

 Our pair of indexes surely cannot fit all data well if our source of uncertainty 

involves different uncertainty mechanisms, as in Example 12, where the source in this 

sense is not “uniform” (formalized by Abdellaoui et al. 2011; our Eq. 22). In such 

situations, however, no (pair of) indexes can fit all the data. We still recommend our 

pair of indexes there as the best (“average”) summary using only one pair of numbers. 

Our indexes may not work well if very unlikely events are incorporated into the 

measurement design. Such events are known to involve many irregularities 

(Kahneman and Tversky 1979). We recommend avoiding them in applications, e.g., 

by imposing boundary conditions (Tversky and Wakker 1995; see Wakker’s 2010 

insensitivity region). Details on underlying econometric assumptions are discussed at 

the end of Appendix A. If practitioners reckon with the limitations just discussed, then 

our indexes can serve well to capture ambiguity attitudes. 

 Theorem 14 serves our indexes similarly as the classical result in expected utility 

for risk where the CRRA index perfectly captures the same (relative) risk aversion 

irrespective of the stimuli used if and only if utility is from the CRRA family (see, 

e.g., Theorem 3 in Harvey 1990). The CRRA index is tractable and performs well 

empirically, even though it shares similar limitations as our indexes. Empirically, the 

fit is usually not perfect as relative risk aversion is mostly not constant. In such 

situations, however, no CRRA index can fit all the data, but may still be the best 

(“average”) summary. Also, it does not work well if extreme outcomes are 

incorporated into the measurement. Nevertheless, if practitioners reckon with these 

limitations, the CRRA index can serve well to capture risk attitudes.  

 Whereas, for instance, expected utility with CRRA utility is a one-parameter 

model, ambiguity models involve many additional parameters (including utility 

functions, nonexpected utility parameters of risk attitudes such as probability 

weighting, and subjective beliefs) besides the parameters of interest in this paper, 

capturing ambiguity. Whereas prior studies needed to jointly estimate all model 

parameters in order to obtain ambiguity measurement, we only need few 
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indifferences. We do so without imposing any restriction on the additional parameters. 

Hence, we greatly simplify the empirical measurement by making many high-

dimensional unknowns (utility, probability weighting, beliefs) drop from the 

equations. This is why a few indifferences suffice to give insights into a high-

dimensional parametric model, without requiring complex data fittings. 

 

4. Extension to many outcomes and outcome-dependent ambiguity 

models 

The following sections drop Assumption 1 (two outcomes) and consider general 

outcome sets 𝑋. The results obtained before can trivially be extended as follows, 

without commitment to any ambiguity model. 

 

OBSERVATION 15. All results of §2 and 3, including Theorems 10, 11, 14, and Eq. 10 

remain valid if we drop Assumption 1 but fix two outcomes 𝛾 ≻ 𝜃 for the matching 

probabilities 𝑚 (Eq. 1) and the indexes 𝑏, 𝑎.  □ 

 

 In several models, ambiguity attitudes depend on the outcomes considered (Chew 

et al. 2008; see OA.2, i.e., Online Appendix OA.2). Then the indexes in Observation 

15 will depend on the outcomes 𝛾, 𝜃 chosen, and can be used to investigate this 

dependence. For example, constant ambiguity aversion w.r.t. absolute utility 

increments (Grant and Polak 2013), or w.r.t. proportional utility increments 

(Chateauneuf and Faro 2009), or these conditions w.r.t. wealth increments (Cerreia-

Vioglio, Maccheroni, and Marinacci 2019), are inherited by matching probabilities 

and our indexes. These conditions can, therefore, be tested using our indexes. 

 The most popular outcome-dependent ambiguity model is the smooth model 

(Klibanoff, Marinacci, and Mukerji 2005). We obtain as aversion index (Online 

Appendix OC): 

 𝑏 =  𝜎2𝐴(𝑝) + 𝑜(𝜎2) . (13) 

Here 𝐴 = −
𝜑′′

𝜑′  is the Arrow-Pratt index of the function 𝜑 that captures ambiguity in 

the smooth model by transforming risky utility (Klibanoff, Marinacci, and Mukerji 
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2005 p. 1865), 𝜎2 is the variance of the second-order uncertainty 𝜇 about ambiguity-

neutral probabilities 𝑝, and 𝑜(𝜎2) expresses first-order approximation as 𝜎2 vanishes. 

Index 𝑏 is the (average of the) product of what is sometimes interpreted as ambiguity 

perception (𝜎2) and a relative aversion index per perceived unit, 𝐴(𝑝). A similar 

decomposition occurs in Eq. 20 below, where it is discussed further. Eq. 13 makes the 

average ambiguity aversion of the smooth model, involving the not directly 

observable 𝑝, 𝐴, and 𝜎2, directly observable because 𝑏 is.  

 We obtain as insensitivity index (Online Appendix OC): 

  𝑎 =   
1

2
 

𝐶𝑜𝑣(𝜎2𝐴(𝑝),𝜈)

𝑉𝑎𝑟(𝜈)
  +  𝑜(𝜎2) . (14) 

It captures how the aversion premium (𝜎2𝐴(𝑝) as in Eq. 13) increases with event size 

𝜈, which indeed reflects sensitivity. The ambiguity attitude analyzed here depends on 

the outcome interval [𝜃, 𝛾] considered, as is typical of the smooth model (e.g., 

Klibanoff, Marinacci, and Mukerji 2005 Proposition 4). 

 We obtain outcome independence for the special case of 𝜑(𝑥) = −𝑒−𝜌𝑥 

(Klibanoff, Marinacci, and Mukerji 2005 Proposition 2). Then: 

  𝑏 = 𝜌𝜎2̅̅ ̅ + 𝑜(𝜎2) ; (15) 

  𝑎 = 
1

2
𝜌 

𝐶𝑜𝑣(𝜎2,𝜈)

𝑉𝑎𝑟(𝜈)
  +  𝑜(𝜎2) .  (16) 

This case is of special interest because it concerns the intersection with the variational 

model (Maccheroni, Marinacci, and Rustichini 2006). This intersection is exactly the 

multiplier preference model of Hansen and Sargent (2001). Outcome independence is 

central in the next section. 

 

5. Extension to outcome-independent ambiguity models 

This section continues to consider general outcome sets 𝑋, dropping Assumption 1. 

Many models assume that ambiguity attitudes are outcome independent.
19

 Then so 

                                                

19 They include biseparable utility (Ghirardato and Marinacci 2001) and, thus, Choquet expected utility 

or rank-dependent utility, prospect theory for gains, maxmin EU, and the 𝛼-maxmin model. Further 
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will our indexes be. Those models are all special cases of the following one. For 

simplicity, we assume the existence of a worst outcome.
20

 Uniseparable utility holds 

if there exists a worst outcome 𝜃 (∀𝛾 ∈ 𝑋: 𝛾 ≽ 𝜃; ∃𝛾 ≻ 𝜃) such that 

 𝛾𝐸𝜃 → 𝑊(𝐸)𝑈(𝛾) and 𝛾𝑝𝜃 → 𝑤(𝑝)𝑈(𝛾) (17) 

represents preferences for prospects with at most one outcome 𝛾 other than 𝜃. For 

monetary gain outcomes, typically 𝜃 = 0; in the health domain, often 𝜃 = death. 

Under prospect theory, 𝜃 is the reference outcome. 𝑈 is the nonconstant utility 

function; we scale 𝑈(𝜃) = 0. 𝑊 is a nonadditive (event) weighting function; i.e., 

𝑊(∅) = 0, 𝑊(𝑆) = 1, and 𝑊 is set-monotonic (𝐴 ⊃ 𝐵 then 𝑊(𝐴) ≥ 𝑊(𝐵)). 

Further, 𝑤: [0,1] → [0,1] is a (probability) weighting function, with 𝑤(0) = 0, 

𝑤(1) = 1, and 𝑤 strictly increasing. Expected utility implies (a) 𝑊 is additive (i.e., 𝑊 

is a subjective probability measure) and (b) 𝑤 is the identity. Expected utility under 

risk only implies (b).Under uniseparable utility, we can redefine 𝑚 in the following 

outcome-independent manner: 

 

DEFINITION 16. 𝑚(𝐸) = 𝑝  if  𝛾𝐸𝜃 ~ 𝛾𝑝𝜃  for some 𝛾 ≻ 𝜃.  □ 

 

By Eq. 17, Definition 16 is equivalent to 𝛾𝐴𝜃 ~ 𝛾𝑝𝜃 for all 𝛾 ≻ 𝜃 (and it is equivalent 

to 𝑊(𝐴) = 𝑤(𝑝)). It, thus, extends our preceding definition (Eq. 1) to more than two 

outcomes. 

 For the sake of easy reference, we provide the following trivial reformulation of 

the results derived in preceding sections, adapted to general 𝑋 and uniseparable 

utility. 

 

OBSERVATION 17. All results of §2 and §3 remain valid, including Theorems 10, 11, 

14, and Eq. 10 if we replace Assumption 1 by uniseparable utility and use Definition 

                                                                                                                                       

included are Chateauneuf and Faro’s (2009) confidence representation with worst outcome 𝜃, 

Izhakian’s (2017) uncertain probability model, and Lehrer and Teper’s (2015) event-separable 

representation. 

20 We focus on gains so that sign-dependence, as in prospect theory for ambiguity, plays no role. 
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16 instead of Eq. 1. Ambiguity neutrality (Definition 3) then implies 𝑊(. ) =

𝑤(𝑃(. )) for a subjective probability measure 𝑃 (= 𝑚).  □ 

 

The observation shows how our indexes and results can be applied to, basically, all 

event-driven ambiguity models. Observation 17 also shows that ambiguity neutrality 

in Definition 3, restricted to two fixed outcomes, agrees with common definitions. 

Ambiguity neutrality comprises both probabilistic sophistication (Machina and 

Schmeidler 1992) and indifference between subjective and objective probabilities 

(Dean and Ortoleva 2017 Footnote 31).  

 

6. Generalizing and unifying existing ambiguity indexes and 

orderings 

This section applies our indexes to a number of outcome-independent ambiguity 

models, relating them to existing indexes and orderings. We assume that ℋ is a belief 

hedge throughout.   

 

6.1. Qualitative ambiguity orderings 

 All papers that we are aware of (OA.5) define ambiguity neutrality as (a special 

case of) global probabilistic sophistication, sometimes as expected utility. Then 𝑚 is 

an additive probability (Definition 3 and Observation 17) and both our indexes are 0 

(Theorem 10), compatible with the existing definitions. The sign of 𝑏 then properly 

reflects ambiguity aversion/seeking. 

 In virtually all papers in the literature, ≽1 is defined to be more ambiguity averse 

than ≽2 if 𝑓 ≽1 𝑟 ⇒ 𝑓 ≽2 𝑟 where 𝑓 is a general, possibly ambiguous act and 𝑟 is an 

unambiguous act (risky, with known probabilities). The most general version is in 

Cerreia-Vioglio et al. (2011); further, see OA.6. This implies that ≽1 has lower 

matching probabilities and, hence, a larger 𝑏 index, which is again compatible with 

these definitions.  

 Some papers considered qualitative orderings of insensitivity or, relatedly, 

ambiguity perception. In multiple priors models, set-inclusions of sets of priors have 

been considered (Ghirardato, Maccheroni, and Marinacci 2004 Proposition 6) that, for 
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tractable subcases of multiple priors models, agree with our insensitivity index (Eq. 

20 below). Tversky and Wakker (1995) considered comparative subadditivity for 

general weighting functions 𝑊. If applied to matching probabilities, they correspond 

with the indexes of Baillon and Bleichrodt (2015) (discussed in §6.2 below) and, 

therefore, this comparative subadditivity is compatible with our index 𝑎. Similarly, 

Tversky and Wakker’s (1995) source preference conditions are compatible with 𝑏. 

 Some papers defined ambiguity indexes, and orderings, using premiums in 

monetary units rather than in our probability units (OA.7). These indexes depend on 

the utility function, are outcome-oriented, and are not directly related to our indexes. 

The remainder of this section shows that our indexes generalize many existing 

quantitative indexes. 

 

6.2. Biseparable utility (including Choquet expected utility) 

 Many theories are special cases of uniseparable utility, including biseparable 

utility and Choquet expected utility, using a nonadditive measure 𝑊. They often 

adopt an aversion index 

 1 − 𝑊(𝐸) − 𝑊(𝐸𝑐). (18) 

It was suggested by Schmeidler (1989, example on pp. 571-572 & p. 574) and 

explicitly proposed by Dow and Werlang (1992). Commonly, expected utility is then 

assumed for risk, so that 𝑚 = 𝑊, and we get: 

 

OBSERVATION 18. Under Assumptions 2 and 8, expected utility for risk, and 

complementation-closedness of ℋ, our ambiguity aversion index 𝑏 is the average of 

Eq. 18. In Schmeidler’s (1989) model, ambiguity aversion
21

 implies 𝑏 > 0, ambiguity 

neutrality implies 𝑏 = 0, and ambiguity seeking implies 𝑏 < 0.  □ 

 

 Eq. 18 has been commonly used in theoretical studies (Klibanoff, Marinacci, and 

Mukerji 2005 Definition 7). MacCrimmon and Larsson (1979 p. 381-384) provided an 

                                                

21 Schmeidler defined ambiguity aversion [neutrality; seeking] as quasiconvexity [linearity; 

quasiconcavity] of preference with respect to outcome (2nd stage probabilities) mixing, which implies 

positivity [nullness; negativity] of Eq. 18 for all 𝐸𝑖 and, hence, of our 𝑏. He used the term uncertainty 

instead of ambiguity. 
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early test. Because Eq. 18 uses the theoretical construct of 𝑊, originally it could not 

be readily implemented empirically. Our aversion index shows how to make it 

observable. Authors using Eq. 18 commonly assumed expected utility for risk, which 

our indexes do not need, increasing their descriptive validity.  

 Baillon and Bleichrodt (2015) considered a domain ℋ(𝐸1, 𝐸2 , 𝐸3) as in our Eq. 

10, and measured five event-specific indexes. These indexes did not provide controls 

for beliefs. Our indexes show how their indexes can be aggregated to provide that 

control, capturing both aversion and insensitivity.
22

 Our indexes are also compatible 

with those of Chateauneuf, Eichberger, and Grant (2007).
23

 Under Choquet expected 

utility with expected utility for risk, our Theorem 14 provides an alternative 

axiomatization of Chateauneuf, Eichberger, and Grant’s (2007) neo-additive model. 

Their model is in the intersection of Choquet expected utility and multiple priors 

models, to which we turn next. 

 
6.3. Multiple priors 

 We consider some popular special cases of multiple prior models. Here, 𝐶 

denotes a convex set of probability distributions over 𝑆. 𝑃∗(𝐸) = sup𝑃∈𝐶 𝑃(𝐸) 

denotes upper probabilities and 𝑃∗(𝐸) = inf𝑃∈𝐶 𝑃(𝐸) denotes lower probabilities. In 

the 𝛼-maxmin model (Ghirardato, Maccheroni, and Marinacci 2004), preferences 

maximize, for 𝛾 ≽ 𝛽: 

𝛾𝐸𝛽 → 𝑊(𝐸)𝑈(𝛾) + (1 − 𝑊(𝐸))𝑈(𝛽) 

with 𝑊(𝐸) = 𝛼𝑃∗(𝐸) + (1 − 𝛼)𝑃∗(𝐸)  (0 ≤ 𝛼 ≤ 1). Expected utility is assumed for 

risk. Maxmin expected utility is the special case of 𝛼 = 1Alon and Schmeidler 2014. 

We get, assuming complementation-closedness (v-hedging is not needed here): 

                                                

22 Using their notation: 𝑏 = 𝐵𝐶 and 𝑎 = (𝐿𝐴 + 𝑈𝐴)/3. 

23 The authors’ interpretations strongly suggest expected utility for risk, and we assume it. (Without this 

assumption, their indexes do not solely capture ambiguity attitudes but also risk attitudes.) Then 

𝑚 = 𝑊 is neo-additive and Eq. 12 gives our indexes. Chateauneuf, Eichberger, and Grant (2007 p. 544 

top) interpret 𝑎 (we use our notation) as lack of confidence (or distrust) in the a-neutral probability 𝑃, 

and 
𝑏

2𝑎
+

1

2
 as an index of pessimism. Ignoring the irrelevant term 

1

2
, their pessimism index is our 

aversion per unit of distrust in 𝑃, which is a relative analog of our absolute index. We compare such 

relative and absolute versions after Eq. 20 below. 
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 𝑏 = (2𝛼 − 1)(𝑃∗ − 𝑃∗) . (19) 

Here (𝑃∗ − 𝑃∗) is the average discrepancy between upper and lower probabilities of 

events, which is sometimes interpreted as ambiguity perception—or as the Dempster-

Shafer plausibility-belief gap (Gul and Pesendorfer, 2014, Corollary 2). Further, 

2𝛼 − 1 (or, equivalently, 𝛼 itself) is commonly taken as an index of ambiguity 

aversion. It is 0 under ambiguity neutrality. We discuss its relation with 𝑏 after Eq. 

20. 

 We next consider a tractable subclass of 𝛼-maxmin, the 𝜀-𝛼-maxmin model 

because here an index of insensitivity/perception has been proposed in the literature. 

Now 𝐶 = {(1 − 𝜀)𝑄 + 𝜀𝑇}, with a fixed baseline probability 𝑄, a fixed 𝜀 ∈ [0,1], and 

the variable 𝑇 any probability measure (Dimmock et al. 2015; axiomatized by 

Chateauneuf, Eichberger, and Grant 2007). It is a subclass of the 𝜀-contamination 

model (Ellsberg 1961 pp. 663-669) that has been used in many fields (OA.3). Here 𝜀 

(= 𝑃∗ − 𝑃∗), capturing the size of the set of priors, has been proposed as an index of 

ambiguity perception (Chateauneuf, Eichberger, and Grant 2007 p. 543; OA.4). 

Dimmock et al. (2015) showed: 

 𝑎 = ε  and  𝑏 = (2𝛼 − 1)𝜀. (20) 

Thus, our insensitivity index directly agrees with ambiguity perception. Index 𝛼 (or 

2𝛼 − 1) captures ambiguity aversion in a relative sense, as aversion per perceived unit 

of ambiguity. Our index 𝑏 is the product of ambiguity perception and aversion per 

unit of perception, capturing aversion in an absolute sense. The pairs (𝑎, 𝑏) and (𝜀, 𝛼) 

are informationally equivalent, and which pair is most convenient depends on the 

context. Index 𝑏 is most useful for determining ambiguity premiums.
24

 

 The following special case of 𝛼-maxmin was considered by Hey, Lotito, and 

Maffioletti (2010). They considered three atoms 𝐸1, 𝐸2, 𝐸3, and 𝐶 contained all 𝑃 with 

𝑃(𝐸1) ≥ 𝜀1, 𝑃(𝐸2) ≥ 𝜀2, 𝑃(𝐸3) ≥ 𝜀3, where the 𝜀𝑗 are nonnegative and sum to less 

than 1. Then we have, with similar interpretations as before
25

: 

  𝑎 = 1 − 𝜀1 − 𝜀2 − 𝜀3  and  𝑏 = (2𝛼1)𝑎. (21) 

                                                

24 Schmeidler (1989 p. 574) used the term uncertainty premium for index 𝑏. 

25 This follows from Eq. 20 by defining 𝑄(𝐸𝑗) =
𝜀𝑗

𝜀1+𝜀2+𝜀3
 and 𝜀 = 1 − 𝜀1 − 𝜀2 − 𝜀3. 
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 Dimmock et al. (2015) showed how to make ambiguity aversion and the 

perceived level of ambiguity directly observable, without the need to measure utility 

𝑈 or the set of priors 𝐶, for Ellsberg urn events. Our contribution here is to abandon 

the restriction to Ellsberg urns (and expected utility for risk).  

 This subsection has shown how the currently popular indexes of ambiguity in 

multiple prior theories can be measured directly for application-relevant events. This 

can now be done with no more need to measure 𝑈 or the set of priors 𝐶, or, as was 

common in applications hitherto, just ad hoc assuming a set 𝐶 given exogenously. 

 

6.4. The source method 

 Abdellaoui et al.’s (2011) source method is the specification of Choquet expected 

utility with 

 𝑊(𝐸) = 𝑤𝑆𝑜(𝑃(𝐸)) . (22) 

𝑤𝑆𝑜 is strictly increasing with 𝑤𝑆(0) = 0 and 𝑤𝑆(1) = 1, and 𝑃 designates a-neutral 

probabilities. The subscript 𝑆𝑜 expresses dependence on the source of uncertainty. 

Abdellaoui et al. (2011) call a source 𝑆𝑜 uniform if Eq. 22 is satisfied. We focus here 

on one uniform source 𝑆𝑜 of ambiguity—besides risk with known probabilities. 

 Abdellaoui et al. (2011) and Dimmock, Kouwenberg, and Wakker (2016), 

abbreviated AD here, used the best neo-additive approximation of a function (𝑤𝑆 and 

𝑚(𝐸), respectively) on the open interval (0,1) by minimizing quadratic distance as in 

regular regressions. They then derived their indexes from this. We here do so for the 

function 𝑚(𝐸) (Eq. 11), where 𝜎 ≥ 0 and 𝜏 are chosen to minimize distance. 

 AD needed a-neutral probabilities 𝑃(𝐸) specified beforehand, based on classical 

Ellsberg symmetry assumptions (𝑃 = 𝜈; Dimmock, Kouwenberg, and Wakker 2016) 

or on separate measurements (Abdellaoui et al. 2011). With 𝜏 and 𝜎 the best-fitting 

neo-additive parameters, AD defined (as in Eq. 12) 

 𝑏´ ∶= 1 − 2𝜏 − 𝜎, 𝑎´ ∶= 1 − 𝜎. (23) 

It is well-known from linear regression theory that then 𝑎′ = 1 − 
𝐶𝑜𝑣(𝑚,𝑃)

𝑉𝑎𝑟(𝑃)
 , and that 

our index 𝑏 always agrees with 𝑏′. By Eq. 8 and the results in Appendix A, our index 

𝑎 agrees well with 𝑎′. 
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 Our contribution to the source method is that knowledge of 𝑃 is no longer 

needed. Thus, the restriction to Ellsberg urns of Dimmock, Kouwenberg, and Wakker 

(2016) is no longer needed, and neither is the separate measurement of 𝑃 (and 𝑈) in 

Abdellaoui et al. (2011). 

 

7. Discussion 

Whereas our indexes can be used beyond Ellsberg urns, it remains interesting to apply 

them to the widely studied Ellsberg urns. Example 12 is a variation of the well-known 

three-color Ellsberg urn, where different sources of uncertainty come together. 

Studying such situations is an interesting topic for future research, both empirically 

and theoretically. Cappelli et al. (2018) give some theoretical suggestions. We next 

use our running example to illustrate some pros of our approach. 

 

EXAMPLE 19 [Example 4 Continued]. Eichberger and Kelsey (2011), EK henceforth, 

also considered another marginal cost besides 𝑐 = 0.9, being 𝑐 = 0.1. The changes in 

choice percentages found (shifting towards high effort) were intuitive, but hard to 

explain by classical game theory. EK showed that ambiguity theories can give 

plausible explanations. For empirically plausible ambiguity attitudes they referred to 

another paper (Kilka and Weber 2001) that considered different uncertainties (and 

subjects) and inferred subjective beliefs from introspective judgments. Hence, it was 

not revealed-preference based. Their ranges of plausible ambiguity attitudes, 

reformulated here in terms of our indexes: −0.15 ≤ 𝑏 ≤ 0.12 and 0.41 ≤ 𝑎 ≤ 0.61 

(EK p. 319). These include the values (𝑏 = 0.08, 𝑎 = 0.43) that we found in our 

imaginary example. Using belief hedges, we can measure ambiguity attitudes with the 

following pros: (1) they are of the players themselves; (2) they refer directly to the 

uncertainty relevant here (the effort level of the other player); (3) the subjective 

beliefs of the players need not be known to us—players do not know the percentages 

in Table 1; (4) we use only revealed preferences. An additional pro of the basic design 

used here, which involved all relevant uncertainties (𝑠𝑗), is that we can derive 

estimates of the underlying a-neutral probabilities. For instance, for our imaginary 

player we get 𝑝1 = 0.54, 𝑝2 = ⋯ = 𝑝5 = 0.07, 𝑝6 = 0.19.  □ 
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 Given our indexes and belief hedges, it is trivial to see that Baillon et al. (2018) is 

a special case. The contribution of this paper concerns the reversed direction: given 

the results of Baillon et al. (our Eq. 10), develop the general indexes and the concept 

of belief hedges. Finding Eq. 9 as the proper general concept of insensitivity, was the 

most challenging step in the project of these two papers. Validity of the general 

indexes was subsequently confirmed by theoretical justifications: preference 

axiomatizations and the common generalization of virtually all existing indexes, 

Baillon et al.’s included.
26

 Another challenge was to find the concept of belief hedges, 

needed for the required flexibility and tractability of our aversion and insensitivity 

indexes in applications (Examples 4, 12, and 19). In many situations, especially when 

analyzing real-world data sets, one may not have much control over the data received, 

and then the flexibility of general belief hedges is desirable. Other practical pros over 

the special case of Baillon et al. (2018) were discussed at the beginning of §3. By the 

generalizations provided by this paper, ambiguity theories become widely applicable.  

 

8. Conclusion 

For a long time, ambiguity measurements were confined to artificial events such as 

secretized urns, because it was unknown how to control for unknown beliefs. We have 

introduced belief hedges for measuring ambiguity attitudes when subjective beliefs 

are unknown. Belief hedges extend the hedging concept from finance, where it 

provides protection against unknown outcomes, to ambiguity where it provides 

protection against unknown beliefs and, thus, the required controls. Through 

axiomatizations we identify belief hedges as necessary and sufficient for measuring 

ambiguity attitudes when beliefs are unknown. Thus, ambiguity attitudes can be 

directly measured for application-relevant events, and resorts to secretized urns are no 

longer needed. 

 Using belief hedges and some econometric concepts, we introduce two new 

indexes of ambiguity. They bring many improvements over existing indexes, and this 

                                                

26 Baillon et al. (2018) did not provide theoretical justifications. 
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is the second contribution of this paper. Our indexes are general enough to provide the 

desired flexibility to practitioners (Examples 4, 12, and 19). They generalize indexes 

provided by Baillon et al. (2018) but, further, most other indexes proposed in the 

literature so far. They thus unify existing indexes, including ambiguity orderings. We 

show that those can all be based on some basic econometric principles, and our 

indexes are valid under virtually all existing ambiguity theories. Unlike their 

predecessors, they do not require expected utility for risk or multi-stage stimuli, which 

is desirable for empirical purposes. Further, they can accommodate ambiguity seeking 

for unlikely events which is, again, empirically desirable. And, unlike their 

predecessors in the literature, our indexes use no theoretical constructs. Hence, they 

can be directly revealed from preferences and in this sense operationalize the 

preceding indexes. In particular, our indexes need no measurements and data fittings 

of risk attitudes (utility/probability weighting) or a-neutral probabilities.   
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Appendix A. Goodness of fit of Eq. 8  

Throughout this paper, for 𝐹: ℋ → ℜ, we write
27

:  𝐹 =
∑ 𝐹(𝐸)𝐸∈ℋ

|ℋ|
;  𝑉𝑎𝑟(𝐹) =

∑ (𝐹(𝐸)−𝐹)
2

𝐸∈ℋ

|ℋ|
;  𝐶𝑜𝑣(𝐹, 𝐺) = 

∑ (𝐹(𝐸)−𝐹)×(𝐺(𝐸)−𝐺)𝐸∈ℋ

|ℋ|
. 

 The following lemma considers variations within our constructed domain ℋ.  

 

LEMMA 20. Assume Assumption 8 and l-hedging. Equivalent are: 

(i) v-hedging;  (ii) 𝐸(1𝑠 × 𝜈) is the same for each 𝑠;  (iii) 𝐶𝑜𝑣(1𝑠 , 𝜈)  

  is the same for each 𝑠.  (24) 

Now, also assume v-hedging. With 1𝐸𝑖
 the probability measure on the atoms 

assigning probability 1 to 𝐸𝑖, we have, for all 𝑠, 𝑖, 𝑃: 

  
𝐶𝑜𝑣(1𝑠 ,𝜈)

𝑉𝑎𝑟(𝜈)
=

𝐶𝑜𝑣(1𝐸𝑖
,𝜈)

𝑉𝑎𝑟(𝜈)
=

𝐶𝑜𝑣(𝑃,𝜈)

𝑉𝑎𝑟(𝜈)
=

𝐶𝑜𝑣(𝜈,𝜈)

𝑉𝑎𝑟(𝜈)
= 1. (25) 

PROOF. For Eq. 24, (ii) is a rewriting of (i), and (iii) is equivalent because  

 𝐶𝑜𝑣(1𝑠, 𝜈) = (𝐸(1𝑠 × 𝜈) − 𝐸(1𝑠) × 𝐸(𝜈)) = 𝐸(1𝑠 × 𝜈) −
1

4
. 

 For Eq. 25, the first fraction is the same for all 𝑠 by Eq. 24.(iii). The first equality 

now follows because 1𝑠 = 1𝐸𝑖
 on ℋ for each 𝑠 ∈ 𝐸𝑖. The second equality follows 

because every probability measure 𝑃 on ℋ is a convex combination of measures 

1𝐸𝑖
(.), and sensitivity and covariance are compatible with convex combinations.

28
 The 

third equality follows because 𝜈 is a special case of a probability measure, and the last 

equality is by definition.  □ 

 

 We next turn to extraneous randomness in the dependency of 𝑚 on 𝑃 and 𝜈. The 

above equality 
𝐶𝑜𝑣(𝑃,𝜈)

𝑉𝑎𝑟(𝜈)
= 1 means that, on average, a change of one unit of 𝜈 

                                                

27 We use population statistics. If one interprets ℋas a sample, small relative to |𝑆|, then one may 

prefer sample statistics, with denominators |ℋ| − 1 instead of |ℋ|. However, those always give the 

same indexes and results throughout our paper because the denominator cancels from all equations. 

28 That is, the sensitivity (or covariance) of a convex combination of functions with respect to some 

other variable (𝜈 in our case) is the convex combination of their sensitivities (or covariances). 



 31 

generates one unit change of 𝑃. Hence, by Stock and Watson (2015 §12.1 and Eq. 

12.7), Eq. 8 provides the best first-order approximation under common econometric 

assumptions together with the following critical assumption: 𝑚 depends on 𝜈 only 

through 𝑃 with, further, random noise. To illustrate this result, and explain when the 

approximation works well, we give an independent derivation of the following result. 

 

PROPOSITION 21. Under Assumptions 2 and 8 and belief hedging, Eq. 8 holds with 

exact equality if any of the following three conditions holds: 

(i) 𝑃 = 𝜈; 

(ii) 𝑚 is neo-additive; 

(iii) 𝑃 best fits 𝑚.
29

 

PROOF. (i) is trivial, and (ii) follows from Eq. 12 (irrespective of what 𝑃 is). We 

consider (iii), where 𝑚 is related to 𝑃 through the neo-additive decision model 

(“regular regression”). The distance to be minimized is 

 ∑ (𝑚(𝐸) − 𝜏 − 𝜎𝑃(𝐸))𝐸∈ℋ

2
. (26) 

The first order condition of Eq. 26 with respect to 𝜏, divided by −2, gives 

∑ (𝑚(𝐸) − 𝜏 − 𝜎𝑃(𝐸))𝐸∈ℋ = 0. Thus, using Eq. 3, 

 𝜏 = 𝑚 − 𝜎/2. (27) 

We define the additive measure 𝑄(𝐸): = 𝜎𝑃(𝐸) and 𝑞𝑖: = 𝑄(𝐸𝑖) = 𝜎𝑃(𝐸𝑖) and find 

the optimally fitting 𝑞𝑖. We optimize over all 𝑞𝑖 ∈ ℝ, later verifying that they are all 

positive (and 𝜎 > 0). By Eq. 27, the distance to be minimized becomes 

 ∑ ((𝑚(𝐸) − 𝑚) − (𝑄(𝐸) − 𝜎/2))𝐸∈ℋ

2
. (28) 

The first-order condition with respect to 𝑞𝑖 is 

 ∑ ((𝑚(𝐸) − 𝑚) − (𝑄(𝐸) − 𝜎/2))𝐸⊃𝐸𝑖
= 0. (29) 

Summing over 𝑖: 

 ∑ ∑ ((𝑚(𝐸) − 𝑚) − (𝑄(𝐸) − 𝜎/2))𝐸⊃𝐸𝑖𝑖 = 0. (30) 

                                                

29 We take the neo-additive model that minimizes quadratic distance, as common in regressions. 
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 ∑ ((𝑚(𝐸) − 𝑚) − 𝜎 (𝑃(𝐸) −
1

2
))𝐸∈ℋ 𝜈(𝐸) = 0. (31) 

 ∑ ((𝑚(𝐸) − 𝑚) − 𝜎 (𝑃(𝐸) −
1

2
))𝐸∈ℋ (𝜈(𝐸) −

1

2
) = 0. (32) 

 𝜎 =  
∑ (𝑚(𝐸)−𝑚)(𝜈(𝐸)−1

2
)𝐸∈ℋ

∑ (𝑃(𝐸)−1
2

)(𝜈(𝐸)−1
2

)𝐸∈ℋ

 =  
|ℋ|

|ℋ|

𝐶𝑜𝑣(𝑚,𝜈)
𝐶𝑜𝑣(𝑃,𝜈)

  = (by Eq. 25)  
𝐶𝑜𝑣(𝑚,𝜈)

𝑉𝑎𝑟(𝜈)
 . (33) 

By Eq. 25, the above denominators are positive. By monotonicity, the above 

numerators are positive; 𝜎 > 0; 𝑞𝑖 = 𝜎𝑝𝑖 > 0 for all 𝑖. Because, with 𝑃 given, 

optimal fitting entails a regular regression of 𝑚 w.r.t. 𝑃, it is well-known that 

𝜎 =  
𝐶𝑜𝑣(𝑚,𝑃)

𝑉𝑎𝑟(𝑃)
. Combining this with Eq. 33 implies exact equality in Eq. 8.  □ 

 

 Eq. 8 gives a good approximation if any of the three cases in Proposition 21 holds 

approximately. Poor approximation can result if all these assumptions are strongly 

violated, but such cases are not empirically plausible. Poor approximation can, of 

course, also result if our basic assumptions, such as monotonicity, are violated. The 

data analysis in Online Appendix OD indeed found a good empirical fit. The average 

absolute discrepancy in Eq. 8 was 0.006. In 95% of the cases, the discrepancy was 

less than 0.01. The remaining 5% all concerned subjects who violated monotonicity 

(then our theoretical analysis makes no claims), with maximal discrepancy 0.27 for a 

highly erratic subject. We conclude that Eqs. 8 and 9 work well for all practical 

purposes. 

 

Appendix B. Proofs except of Theorem 14 

PROOF OF THEOREM 10. Under ambiguity neutrality, 𝑚 is a probability measure on ℋ 

and its atoms. By Eq. 3, 𝑚 = 0.5 and 𝑏 = 0. By Eq. 25, 
𝐶𝑜𝑣(𝑚,𝜈)

𝑉𝑎𝑟(𝜈)
= 1 and 𝑎 = 0. 

Conversely, assume 𝑏 = 0 for all probability measures 𝑃 = 𝑚. Then 𝑚 = 0.5 for all 

𝑚 = 1𝑠, which is l-hedging. Similarly, if 𝑎 = 0 for all probability measures 𝑃 = 𝑚 

then it is so for all 𝑚 = 1𝑠, implying 
𝐶𝑜𝑣(1𝑠,𝜈)

𝑉𝑎𝑟(𝜈)
= 1 for all 𝑠 which, by Eq. 24, implies 

v-hedging. 
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 We, finally, turn to the supremum values of the indexes. 𝑏 tends to its suppremum 

1 as �̅� tends to its minimum 0. 𝑎 tends to its supremum 1 as 𝐶𝑜𝑣(𝑚, 𝜈) tends to its 

infimum 0 (by monotonicity, it cannot be negative), which occurs when 𝑚 tends to a 

constant function.  □ 

 

PROOF OF THEOREM 11. We take our data set 𝑚 as a vector in ℝ|ℋ|. Index 𝑏 is a 

normalization of the inner product of 𝑚 with the aversion vector (1, … ,1). Index 𝑎 is 

a normalization of the inner product of 𝑚 with the insensitivity vector (𝜈(𝐸) −

1

2
)

𝐸∈|ℋ|
.
30

  The aversion and insensitivity vectors are orthogonal because their inner 

product is ∑ (𝜈(𝐸) −
1

2
) = 0.  □ 

 

PROOF OF EQ. 19. Here we also assume complementation-closedness. (v-hedging is 

not needed here.)  𝑚(𝐸𝑐) = 𝛼𝑃∗(𝐸𝑐) + (1 − 𝛼)𝑃∗(𝐸𝑐) =  𝛼(1 − 𝑃∗(𝐸)) +

 (1 − 𝛼)(1 − 𝑃∗(𝐸)). Further, 𝑚(𝐸) + 𝑚(𝐸𝑐) = 𝛼𝑃∗(𝐸) +  (1 − 𝛼)𝑃∗(𝐸) +

 𝛼(1 − 𝑃∗(𝐸)) +  (1 − 𝛼)(1 − 𝑃∗(𝐸)) = 1 − (2𝛼 − 1)(𝑃∗(𝐸) − 𝑃∗(𝐸)). Finally, 

= 1 − 2𝑚(𝐸) = 1 − 𝑚(𝐸) − 𝑚(𝐸𝑐) = (2𝛼 − 1)(𝑃∗ − 𝑃∗).   □ 

 

Appendix C. Proof of Theorem 14 

That (i) implies (ii) in Theorem 14 follows because Eq. 12 holds for every ℋ. From 

now on, we assume (ii) and derive (i). To prepare, we first prove that, if our indexes 

fit perfectly, then we must have probabilistic sophistication within our source 𝑆. That 

is, we must have uniformity in the terminology of Abdellaoui et al. (2011), ruling out 

Example 12. 

 

OBSERVATION 22. Under Assumptions 2 and 8, if our indexes are the same for every 

ℋ{𝐸1, 𝐸2, 𝐸3}, and fineness and event-continuity hold, then 𝑚(. ) = 𝑤𝑎(𝑃(. )) for a 

strictly increasing 𝑤𝑎 and a fine (atomless) countable additive probability measure 𝑃. 

                                                

30 |ℋ|𝐶𝑜𝑣(𝑚, 𝜈) =  ∑(𝑚(𝐸) − 𝑚) (𝜈(𝐸) −
1

2
) =  ∑𝑚(𝐸) (𝜈(𝐸) −

1

2
). 
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PROOF. The proof uses Lemmas 23-27. 

 

LEMMA 23. We cannot have 𝐴1 ≻ 𝐵1, 𝐴2 ≽ 𝐵2, 𝐴3 ≽ 𝐵3 for two threefold partitions 

{𝐴1, 𝐴2, 𝐴3} and {𝐵1, 𝐵2, 𝐵3} of 𝑆 containing nonnull events. 

 

PROOF. Consider ℋ{𝐴1, 𝐴2, 𝐴3} and ℋ{𝐵1, 𝐵2, 𝐵3}. They have the same aversion 

index 𝑏 and, hence, the same average 𝑚. Because 𝑚𝑠̅̅ ̅̅  of the former exceeds 𝑚𝑠̅̅ ̅̅  of the 

latter, for 𝑚𝑐̅̅ ̅̅  it must be opposite. But then (Eq. 10) 𝑎 is smaller for the former than 

for the latter, contradicting perfect fit.  QED 

 

We next derive implications of event continuity, similar to Villegas (1964 p. 1790) 

but we do not have what he called monotonicity (≈ additivity)—this is also the reason 

that we need two event continuity conditions, whereas for Villegas one is equivalent 

to the other. 

 

LEMMA 24. If 𝐷 ≻ 𝐵 ≻ ∅, then there exist 𝐶 ⊂ 𝐷, 𝐴 ⊂ 𝐷  with 𝐷 ≻ 𝐶 ≻ 𝐵 ≻ 𝐴 ≻ ∅. 

 

PROOF. There exists 𝐻 ⊂ 𝐷 such that 𝐷 ≻ 𝐻 ≻ ∅. 𝐷 − 𝐻 is nonnull and, by 

monotonicity, ≻ ∅. We have partitioned 𝐷 into two nonnull events that we now 

denote 𝐷1, 𝑆1, where we assume 𝐷1 ≽ 𝑆1. We can similarly partition the smaller of 

these two, 𝑆1, into two nonnull events 𝐷2 ≽ 𝑆2, and inductively continue to obtain an 

infinite decreasing (in terms of ≽) sequence of disjoint nonnull subevents 𝐷𝑗 ⊂ 𝐷. 

 Assume, for contradiction, that 𝐷𝑗 ≽ 𝐵 for all 𝑗, which can be interpreted as a 

violation of Archimedeanity. Whereas ⋃ 𝐷𝑖
∞
𝑖=𝑗  decreases to the empty set for 𝑗 → ∞, 

every union is ≻ 𝐵 ≻ ∅, violating event continuity. Hence, an 𝐴 = 𝐷𝑗 as required 

exists. This also implies that 𝑆∞ : = 𝐷 − ⋃ 𝐷𝑖
∞
𝑖=1  is null. Otherwise, with 𝑆∞ in the 

role of 𝐵, 𝐷𝑗 ≺ 𝑆∞ should occur for some 𝑗 as we just showed, contradicting 𝐷𝑗 ≽ 𝑆𝑗. 

We can, therefore, replace 𝐷1 by 𝐷1 ∪ 𝑆∞ and every 𝑆𝑗 by 𝑆𝑗 − 𝑆∞, without affecting 

preference. That is, ⋃ 𝐷𝑖 = 𝐷∞
𝑖=1 . By event continuity, 𝐶: = ⋃ 𝐷𝑗 ≻ 𝐵𝐽

𝑖=1  for 𝐽 large 

enough.  □ 
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LEMMA 25. We cannot have 𝐴1 ≻ 𝐵1, 𝐴2 ≽ 𝐵2 for two twofold partitions {𝐴1, 𝐴2} and 

{𝐵1, 𝐵2} of 𝑆. 

 

PROOF. Assume, for contradiction, events as in the lemma. By Lemma 24, there exists 

𝐴1´ ⊂ 𝐴1 such that 𝐴1 ≻ 𝐴1´ ≻ 𝐵1. We define 𝐴1´´ = 𝐴1 − 𝐴1´ ≻ ∅ (by 

monotonicity). Again by Lemma 24, there exists 𝐵1´´ ⊂ 𝐵1 with  ∅ ≺ 𝐵1´´ ≺ 𝐴1´´. We 

define 𝐵1´ = 𝐵1 − 𝐵1´´. We have two partitions {𝐴1´, 𝐴1´´, 𝐴2} and {𝐵1´, 𝐵1´´, 𝐵2} that 

violate Lemma 23.  QED 

 

LEMMA 26. If 𝐴 ∩ 𝐶 = 𝐵 ∩ 𝐶 = ∅, then 𝐴 ≽ 𝐵 ⇔ 𝐴 ∪ 𝐶 ≽ 𝐵 ∪ 𝐶. 

 

PROOF. Assume 𝐴 ≽ 𝐵. Consider partitions {𝐴, 𝐶, 𝑆 − 𝐴 − 𝐶}  and  {𝐵, 𝐶, 𝑆 − 𝐵 − 𝐶}. 

By Lemma 23, 𝑆 − 𝐴 − 𝐶 ≼ 𝑆 − 𝐵 − 𝐶. By Lemma 25, 𝐴 ∪ 𝐶 ≽ 𝐵 ∪ 𝐶. The same 

reasoning holds with strict preferences.  QED 

 

Villegas used the following implication. 

 

LEMMA 27. Assume 𝐴1 ∩ 𝐴2 = ∅ = 𝐵1 ∩ 𝐵2. Then 𝐴1 ≽ 𝐵1 & 𝐴2 ≽ 𝐵2 ⇒ 𝐴1 ∪ 𝐴2 ≽

𝐵1 ∪ 𝐵2, with strict preference if at least one of the two premises is strict. 

 

PROOF. By Lemma 26, and Villegas (1964, p. 1789 4th para).  QED 

 

Observation 22 now follows from Villegas (1964, Theorem 4.3).  □ 

 

OBSERVATION 28. 𝑚 is neo-additive. 

 

PROOF. By perfect fit, each belief hedge ℋ imposes two equalities on 𝑚(. ) =

𝑤𝑎(𝑃(. )), one for each index. We know that there exists at least one 𝑤𝑎 satisfying all 

those equalities, being the neo-additive function corresponding with the values 𝑏, 𝑎 

found (Eq. 12). It, hence, suffices to show that 𝑤𝑎(𝑝) is uniquely determined for each 

𝑝. Consider ℋ{𝐸1, 𝐸2, 𝐸3} with 𝑃(𝐸𝑗) =
1

3
 for each 𝑗. By fineness and countable 

additivity, such 𝐸𝑗s exist. Here, 𝑏 determines the average of 𝑚𝑠̅̅ ̅̅ =  𝑤𝑎(
1

3
) and 
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𝑚𝑐̅̅ ̅̅ = 𝑤𝑎(
2

3
) and 𝑎 determines their difference. This uniquely determines 𝑤𝑎(

1

3
) and 

𝑤𝑎(
2

3
) as the neo-additive values. 

 Next assume, for induction w.r.t. 𝑘 ≥ 0, that 𝑤𝑎 takes the neo-additive values at 

all 𝑝 =
𝑖

3×2𝑘 . Consider 
𝑗

3×2𝑘+1 (< ½) for an odd 𝑗 < 3 × 2𝑘, and a threefold partition 

{𝐸1, 𝐸2, 𝐸3} with 𝑃(𝐸1) = 𝑃(𝐸2) =
𝑗

3×2𝑘+1, so that 𝑃(𝐸3) =
3×2𝑘−𝑗

3×2𝑘 . For 

ℋ{𝐸1, 𝐸2, 𝐸3}’s 𝑚 values, there are only two unknowns: 𝑤𝑎(
𝑗

3×2𝑘+1) (for 𝐸1 and 𝐸2) 

and 𝑤𝑎(1 −
𝑗

3×2𝑘+1) (for 𝐸1 ∪ 𝐸3 and 𝐸2 ∪ 𝐸3). Again, Eq. 10 uniquely determines the 

average and the difference of the two unknowns, so that they are both uniquely 

determined and must be the neo-additive values. This way, 𝑤𝑎 takes the neo-additive 

values at all 𝑝 =
𝑗

3×2𝑘+1, both below and above 
1

2
. By induction, it does so for all 𝑘. 

These values lie dense in (0,1), so that the nondecreasing (by monotonicity it is even 

strictly increasing) function 𝑤𝑎 is the neo-additive function everywhere.  □ 

 

 The following observation follows from the above proof because we only used 

the designs mentioned. 

 

OBSERVATION 29. Perfect fit in Statement (ii) in Theorem 14 can be restricted to 

designs ℋ{𝐸1, 𝐸2, 𝐸3}.  □ 

 

D.5. Further remarks (voor mezelf: over andere modellen) 

ERASMUS SCHOOL OF ECONOMICS, ERASMUS UNIVERSITY ROTTERDAM 

 

References 

Abdellaoui, Mohammed, Aurélien Baillon, Laetitia Placido, & Peter P. Wakker 

(2011) “The Rich Domain of Uncertainty: Source Functions and Their 

Experimental Implementation,” American Economic Review 101, 695–723.  

Alon, Shiri & David Schmeidler (2014) “Purely Subjective Maxmin Expected 

Utility,” Journal of Economic Theory 152, 382–412. 



 37 

Anantanasuwong, Kanin, Roy Kouwenberg, Olivia S. Mitchell, & Kim Peijnenburg 

(2020) “Ambiguity Attitudes about Investments: Evidence from the Field,” 

working paper. 

Baillon, Aurélien & Han Bleichrodt (2015) “Testing Ambiguity Models through the 

Measurement of Probabilities for Gains and Losses,” American Economic 

Journal: Microeconomics 7, 77–100.  

Baillon, Aurélien, Zhenxing Huang, Asli Selim, & Peter P. Wakker (2018) 

“Measuring Ambiguity Attitudes for All (Natural) Events,” Econometrica 86, 

1839–1858.  

Bruhin, Adrian, Helga Fehr-Duda, & Thomas Epper (2010) “Risk and Rationality: 

Uncovering Heterogeneity in Probability Distortion,” Econometrica 78, 1375–

1412.  

Cappelli, Veronica Roberta, Simone Cerreia-Vioglio, Fabio Maccheroni, Massimo 

Marinacci, & Stefania Minardi (2018) “Sources of Uncertainty and Subjective 

Prices,” working paper.  

Cerreia-Vioglio, Simone, Fabio Maccheroni, & Massimo Marinacci (2019) 

“Ambiguity Aversion and Wealth Effects,” Journal of Economic Theory, 

forthcoming.  

Cerreia-Vioglio, Simone, Fabio Maccheroni, Massimo Marinacci, & Luigi 

Montrucchio (2011) “Uncertainty Averse Preferences,” Journal of Economic 

Theory 146, 1275–1330. 

Chateauneuf, Alain & José H. Faro (2009) “Ambiguity through Confidence 

Functions,” Journal of Mathematical Economics 45, 535–558.  

Chateauneuf, Alain, Jürgen Eichberger, & Simon Grant (2007) “Choice under 

Uncertainty with the Best and Worst in Mind: NEO-Additive Capacities,” 

Journal of Economic Theory 137, 538–567.  

Chew, Soo Hong, King King Li, Robin Chark, & Songfa Zhong (2008) “Source 

Preference and Ambiguity Aversion: Models and Evidence from Behavioral and 

Neuroimaging Experiments.” In Daniel Houser & Kevin McGabe (eds.) 

Neuroeconomics. Advances in Health Economics and Health Services Research 

20, 179–201, JAI Press, Bingley, UK.  

Chierchia, Gabriele, Rosemarie Nagel, & Giorgio Coricelli (2018) “Betting ‘on 

Nature’ or ‘Betting on Others’: Anti-Coordination Induces Uniquely High Levels 

of Entropy,” working paper.  



 38 

Cozic, Mikael & Brian Hill (2015) “Representation Theorems and the Semantics of 

Decision-Theoretic Concepts,” Journal of Economic Methodology 22, 292–311.  

Dean, Mark & Pietro Ortoleva (2017) “Allais, Ellsberg, and Preferences for 

Hedging,” Theoretical Economics 12, 377–424.  

Dietrich, Franz (2018) “Savage’s Theorem under Changing Awareness,” Journal of 

Economic Theory 176, 1–54. 

Dimmock, Stephen G., Roy Kouwenberg, Olivia S. Mitchell, & Kim Peijnenburg 

(2015) “Estimating Ambiguity Preferences and Perceptions in Multiple Prior 

Models: Evidence from the Field,” Journal of Risk and Uncertainty 51 219–244.  

Dimmock, Stephen G., Roy Kouwenberg, & Peter P. Wakker (2016) “Ambiguity 

Attitudes in a Large Representative Sample,” Management Science 62, 1363–

1380.  

Dow, James & Sérgio R.C. Werlang (1992) “Uncertainty Aversion, Risk Aversion 

and the Optimal Choice of Portfolio,” Econometrica 60, 197–204.  

Eichberger, Jürgen & David Kelsey (2011) “Are the Treasures of Game Theory 

Ambiguous?,” Economic Theory 48, 313–393. 

Eichberger, Jürgen, Simon Grant, & Jean-Philippe Lefort (2012) “Generalized Neo-

Additive Capacities and Updating,” International Journal of Economic Theory 8, 

237–257.  

Ellsberg, Daniel (1961) “Risk, Ambiguity and the Savage Axioms,” Quarterly 

Journal of Economics 75, 643–669.  

Fehr-Duda, Helga & Thomas Epper (2012) “Probability and Risk: Foundations and 

Economic Implications of Probability-Dependent Risk Preferences,” Annual 

Review of Economics 4, 567–593. 

Ghirardato, Paolo, Fabio Maccheroni, & Massimo Marinacci (2004) “Differentiating 

Ambiguity and Ambiguity Attitude,” Journal of Economic Theory 118, 133–173.  

Ghirardato, Paolo & Massimo Marinacci (2001) “Risk, Ambiguity, and the Separation 

of Utility and Beliefs,” Mathematics of Operations Research 26, 864–890.  

Goeree, Jacob K. & Charles A. Holt (2001) “Ten Little Treasures of Game Theory 

and Ten Intuitive Contradictions,” American Economic Review 91, 1402–1422. 

Grant, Simon & Ben Polak (2013) “Mean-Dispersion Preferences and Constant 

Absolute Uncertainty Aversion,” Journal of Economic Theory 148, 1361–1398.  

Gul, Faruk & Wolfgang Pesendorfer (2014) “Expected Uncertain Utility Theory,” 

Econometrica 82, 1–39.  



 39 

Hansen, Lars P. & Thomas J. Sargent (2001) “Robust Control and Model 

Uncertainty,” American Economic Review, Papers and Proceedings 91, 60–66.  

Harvey, Charles M. (1990) “Structural Prescriptive Models of Risk Attitude,” 

Management Science 36, 1479–1501. 

Hey, John D., Gianna Lotito, & Anna Maffioletti (2010) “The Descriptive and 

Predictive Adequacy of Theories of Decision Making under 

Uncertainty/Ambiguity,” Journal of Risk and Uncertainty 41, 81–111.  

Izhakian, Yehuda (2017) “Expected Utility with Uncertain Probabilities Theory,” 

Journal of Mathematical Economics 69, 91–103.  

Kahneman, Daniel & Amos Tversky (1979) “Prospect Theory: An Analysis of 

Decision under Risk,” Econometrica 47, 263–291.  

Kilka, Michael & Martin Weber (2001) “What Determines the Shape of the 

Probability Weighting Function under Uncertainty,” Management Science 47, 

1712–1726.  

Klibanoff, Peter, Massimo Marinacci, & Sujoy Mukerji (2005) “A Smooth Model of 

Decision Making under Ambiguity,” Econometrica 73, 18491892.  

Kocher, Martin G., Amrei Marie Lahno, & Stefan T. Trautmann (2018) “Ambiguity 

Aversion Is not Universal,” European Economic Review 101, 268–283.  

l’Haridon, Olivier, Ferdinand Vieider, Diego Aycinena, Augustinus Bandur, Alexis 

Belianin, Lubomir Cingl, Amit Kothiyal, & Peter Martinsson (2018) “Off the 

Charts: Massive Unexplained Heterogeneity in a Global Study of Ambiguity 

Attitudes,” Review of Economics and Statistics 100, 664–677. 

Lehrer, Ehud & Roee Teper (2015) “Subjective Independence and Concave Expected 

Utility,” Journal of Economic Theory 158, 33–53.  

Maccheroni, Fabio, Massimo Marinacci, & Aldo Rustichini (2006) “Ambiguity 

Aversion, Robustness, and the Variational Representation of Preferences,” 

Econometrica 74, 1447–1498.  

MacCrimmon, Kenneth R. & Stig Larsson (1979) “Utility Theory: Axioms versus 

“Paradoxes” .” In Maurice Allais & Ole Hagen (eds.) Expected Utility 

Hypotheses and the Allais Paradox, 333–409, Reidel, Dordrecht.  

Machina, Mark J. & David Schmeidler (1992) “A More Robust Definition of 

Subjective Probability,” Econometrica 60, 745–780.  



 40 

Mackenzie, Andrew (2019) “A Foundation for Probabilistic Beliefs with or without 

Atoms,” Theoretical Economics 14, 709–778. 

Savage, Leonard J. (1954) “The Foundations of Statistics.” Wiley, New York. (2nd 

edn. 1972, Dover Publications, New York.)  

Schmeidler, David (1989) “Subjective Probability and Expected Utility without 

Additivity,” Econometrica 57, 571–587.  

Stock, James H. & Mark W. Watson (2015) “Introduction to Econometrics.” Pearson 

Education, Reading, Mass.  

Trautmann, Stefan T. & Gijs van de Kuilen (2015) “Ambiguity Attitudes.” In Gideon 

Keren & George Wu (eds.), The Wiley Blackwell Handbook of Judgment and 

Decision Making (Ch. 3), 89–116, Blackwell, Oxford, UK.  

Tversky, Amos & Craig R. Fox (1995) “Weighing Risk and Uncertainty,” 

Psychological Review 102, 269–283.  

Tversky, Amos & Peter P. Wakker (1995) “Risk Attitudes and Decision Weights,” 

Econometrica 63, 1255–1280.  

Villegas, Cesáreo (1964) “On Quantitative Probability -Algebras,” Annals of 

Mathematical Statistics 35, 1787–1796.  

Viscusi, W. Kip & Wesley A. Magat (1992) “Bayesian Decisions with Ambiguous 

Belief Aversion,” Journal of Risk and Uncertainty 5, 371–387.  

Wakker, Peter P. (2010) “Prospect Theory: For Risk and Ambiguity.” Cambridge 

University Press, Cambridge, UK.  

  

  



Online Appendix of 

“Belief Hedges: Applying Ambiguity Measurements 

to All Events and All Ambiguity Models” 

Aurélien Baillon, Han Bleichrodt, Chen Li, & Peter P. Wakker 

Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the 

Netherlands, Baillon@ese.eur.nl, c.li@ese.eur.nl, Wakker@ese.eur.nl 

February 2020 

 

Online Appendix OA: Literature Surveys on Ambiguity 

OA.1. Theoretical surveys of ambiguity  

 These include Etner & Tallon (2012), Gilboa & Marinacci (2016), Marinacci 

(2015), and Machina & Siniscalchi (2014). An empirical survey is Trautmann & van 

de Kuilen (2015). 

 

OA.2. Papers with outcome-dependent ambiguity 

 These include Chew et al. (2008), Dobbs (1991), Gul & Pesendorfer (2014, 

2015), He (2019), Kahneman & Tversky (1975), Klibanoff, Marinacci, & Mukerji 

(2005), Nau (2006), Neilson (2010), Olszewski (2007), Siniscalchi (2009), Skiadas 

(2013), and Skiadas (2015). 

 

OA.3. Fields where 𝜺-contamination model was used 

 These fields include decision theory (Baillon et al. (2018b; Basili, Chateauneuf, 

& Scianna 2018), robust statistics (Hodges & Lehmann 1952), finance (Epstein & 

Schneider 2010), insurance theory (Carlier, Dana, & Shahidi 2003), game theory 

(Aryal & Stauber 2014). It satisfies Chew and Sagi’s (2008) assumptions (Eq. 22), 

with a-neutral probabilities 𝑃 = 𝑄.  
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OA.4. 𝜺 in 𝜺-contamination model taken as level of ambiguity 

 This happened in Alon & Gayer (2016), Chateauneuf, Eichberger, & Grant 

(2007), Gajdos et al. (2008), Ghirardato, Maccheroni, & Marinacci (2004; Proposition 

6), Giraud (2014), Hill (2013), Klibanoff, Mukerji, & Seo (2014), Shattuck & Wagner 

(2016), and Walley (1991). 

 

OA.5. Expected utility for risk & ambiguity neutrality equated with subjective 

expected utility 

This happened in Chateauneuf & Faro (2009), Evren (2019), Ghirardato, Maccheroni, 

& Marinacci (2004), Ghirardato & Marinacci (2002), Klibanoff, Marinacci, & 

Mukerji (2005), Montesano & Giovannoni (1996), Nehring (1999), and Siniscalchi 

(2009).  

 

OA.6. More ambiguity averse in Yaari-type way 

 Many papers define ≽1 as more ambiguity averse than ≽2 if 𝑓 ≽1 𝑟 ⇒ 𝑓 ≽2 𝑟 

where 𝑓 is a general, possibly ambiguous act and 𝑟 is an unambiguous act (risky, with 

known probabilities). This implies identical risk attitudes and, once that is assumed, it 

suffices to take 𝑟 above riskless. Papers include Chateauneuf and Faro (2009 p. 541), 

Dean and Ortoleva (2017 Definition 5), Epstein (1999 Eq. 2.3), Evren (2019), 

Frick,Iijima, and Le Yaouanq (2019), Ghirardato and Marinacci (2002 Definitions 4 

& 7), Giraud (2014 Definition 7), Gul and Pesendorfer (2014 Corollary 1), Gul and 

Pesendorfer (2015 Propositions 3 and 4) with ideal events instead of risk, Klibanoff, 

Marinacci, and Mukerji (2005 Definition 5), Klibanoff, Mukerji, and Seo (2014 

Definition 3.4), and Qu (2015). In particular, it is compatible with the pointwise 

ordering of the uncertainty aversion function 𝐺 in Cerreia et al.’s (2011b Proposition 

6) general uncertainty aversion model.  

 

OA.7. Ambiguity indexes/premia in monetary units 

 This happened in Brenner & Izhakian (2018), Cubitt, van de Kuilen, & Mukerji 

(2018), Giammarino & Barrieu (2013), Izhakian & Brenner (2011), Jewitt & Mukerji 

(2017), Lang (2017), l’Haridon e al. (2018), Maccheroni, Marinacci, Ruffino (2013), 

and Montesano & Giovannoni (1996). 
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Online Appendix OB: Some Further Proofs 

PROOF OF EQ. 10. The case of index 𝑏 is clear. As for index 𝑎, 

|ℋ|𝐶𝑜𝑣(𝑚, 𝜈) =  ∑ (𝑚(𝐸𝑖) − 𝑚) (
1

3
−

1

2
) + 3

𝑖=1 ∑ (𝑚(𝐸𝑖
𝑐) − 𝑚) (

2

3
−

1

2
) =3

𝑖=1

3(𝑚𝑠 − 𝑚) (−
1

6
) + 3(𝑚𝑐 − 𝑚) (

1

6
) =

𝑚𝑐−𝑚𝑠

2
; 

|ℋ|𝑉𝑎𝑟(𝜈) =  ∑ (
1

3
−

1

2
)

2

+ 3
𝑖=1 ∑ (

2

3
−

1

2
)

2

=
1

6
 3

𝑖=1 . 

𝐶𝑜𝑣(𝑚,𝜈)

𝑉𝑎𝑟(𝜈)
= 3(𝑚𝑐 − 𝑚𝑠).  □ 

 

PROOF OF EQ. 12. Because ∅ and 𝑆 are not in ℋ, and all atoms are nonnull, 0 <

𝑃(𝐸) < 1 for all 𝐸 ∈ ℋ. Hence , 𝑚 = 𝜏 + 𝜎 𝑃 = (by Eq. 3) 𝜏 + 𝜎/2 and the result for 

𝑏 follows. As regards 𝑎, because 𝑚 is an affine function of 𝑃 with slope 𝜎 on ℋ, 

C𝑜𝑣(𝑚,𝜈)

𝑣𝑎𝑟(𝜈)
= 𝜎

C𝑜𝑣(𝑃,𝜈)

𝑣𝑎𝑟(𝜈)
 = (by Eq. 25) 𝜎.  □ 

 

Online Appendix OC: Proofs for the Smooth Model (§4) 

 We analyze our indexes for the smooth ambiguity model. Our analysis is similar 

to Izhakian and Brenner (2011) who provided local ambiguity premiums expressed in 

monetary units. Our premiums are expressed in probability units. We fix 𝛾 ≻ 𝜃 and 

analyze Eq. 1 under the smooth model of ambiguity, explaining notation later: 

  ∫ 𝜑(𝑄(𝐸))𝑑𝜇
Δ(𝑆)

=  𝜑(𝑚(𝐸)). (OC.1) 

The smooth model assumes expected utility for risk with utility function 𝑢, which we 

normalize at 𝑢(𝛾) = 1 and 𝑢(𝜃) = 0. Δ(𝑆) denotes the set of (first-order) probability 

measures over 𝑆, and 𝜇 is a second-order probability distribution over Δ(𝑆) 

interpreted as perception of ambiguity. To evaluate 𝛾𝐸𝜃 (through the integral in Eq. 

OC.1, we take the second-order 𝜇-weighted expectation of 𝑄(𝐸), the 𝑄-expected 

utility, but transformed by a function 𝜑. Concavity of 𝜑 captures ambiguity aversion, 

linearity captures ambiguity neutrality, and convexity captures ambiguity seeking. 

The right prospect in Eq. 1, 𝛾𝑚(𝐸)𝜃, is evaluated by the right-hand side of Eq. OC.1 

the first-order probability of receiving 𝛾 being certain to be 𝑚(𝐸). 𝑝 = 𝑃(𝐸) =
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∫ 𝑄(𝐸)𝑑𝜇
Δ(𝑆)

 denotes the a-neutral probability of 𝐸. The variance of 𝑄(𝐸) with 

respect to 𝜇 is 𝜎2 = ∫ (𝑄(𝐸) − 𝑃(𝐸))2𝑑𝜇
Δ(𝑆)

. 𝐴 = −
𝜑′′

𝜑′  is the Arrow-Pratt index of 

ambiguity aversion (Klibanoff, Marinacci, and Mukerji 2005 p. 1865), and 𝑜(𝜎2) 

expresses first-order approximation as 𝜎2 vanishes. 

 

LEMMA OC.1. For some given event 𝐸: 

  𝑝 − 𝑚(𝐸) =  
1

2
𝜎2𝐴(𝑝) + 𝑜(𝜎2) . (OC.2) 

 

PROOF OF LEMMA OC.1. Pratt (1964 Eqs. 4-6) studied local risk premiums by letting 

lotteries converge to a riskless lottery/outcome 𝑥, with expectation kept fixed and 

variance tending to 0. We similarly study local ambiguity premiums by letting acts 

converge to an unambiguous act/lottery 𝛾𝑝𝜃, with the ambiguity-neutral part kept 

fixed and ambiguity 𝜎2 tending to 0, as follows. 

 We assume in this Online Appendix OC that all functions are sufficiently smooth 

with all required derivatives existing and all 𝑂 and 𝑜 terms uniform. In our 

mathematical derivation we will use a mathematical extension of 𝑚, i.e. 𝑚 as it would 

be in the smooth model for events derived from each 𝐹 ∈ ℋ as in Eq. OC.3 below 

(required for all 𝛼 > 0 sufficiently close to 0, where “sufficiently close” may depend 

on 𝐹). Such events need not be present in the actual design ℋ. 

 We follow Klibanoff, Marinacci, and Mukerji (2005) and assume a compound 

state space 𝑆 = 𝑆′ × (0,1], providing an Anscombe-Aumann mixture structure. Here 

𝑆′ captures the uncertainty of interest and [0,1] is only auxiliary. For example, 𝐹′ is 

the event of the AEX index going up by more than 0.2%, and 𝐹 = 𝐹′ × [0,1] is the 

event of that happening and the result of our randomizing machine just being 

anything. 𝐹 and 𝐹′ can be identified for many purposes. In what follows, we keep 

some 𝐹 and the corresponding 𝐹′ fixed, with fixed a-neutral probability 𝑝 (𝜇-averaged 

𝑄(𝐹)) and fixed 𝜇-variance of 𝑄(𝐹), denoted 𝜏2. We consider mixtures 𝛼𝛾𝐹𝜃 + (1 −

𝛼)𝛾𝑝𝜃 comprising an 𝛼 ambiguous and a 1 − 𝛼 unambiguous part, with 𝛼 ↓ 0. This 

mixture can be obtained by receiving 𝛾 under the disjoint union of an ambiguous and 

unambiguous event: 

 (𝐹′ × (1 − 𝛼, 1]) ∪ (𝑆′ × (0, (1 − 𝛼)𝑝]);  (OC.3)  
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and 𝜃 otherwise. The events in Eq. OC.3 play the role of events 𝐸 in Eq. OC.2 The 

limit of 𝐸 tending to an ambiguity neutral event in the main text is achieved by letting 

𝛼 tend to 0 in Eq. OC.3. The corresponding ambiguity-neutral probability is 𝛼𝑝 +

(1 − 𝛼)𝑝 = 𝑝 for all 𝛼. 

 The matching probability 𝑚𝛼 is defined by the indifference 

  𝛾(𝐹′×(1−𝛼,1]) ∪ (𝑆′×(0,(1−𝛼)𝑝])𝜃 ~ 𝛾𝑚𝛼
𝜃. 

Writing 𝑞 = 𝑄(𝐹), 

  ∫ 𝜑(𝛼𝑞 + (1 − 𝛼)𝑝)𝑑𝜇
Δ(𝑆) = 𝜑(𝑚𝛼) . (OC.4) 

Substituting Taylor series of 𝜑 for 𝛼 ↓ 0 in the right-hand side: 

  𝜑(𝑚𝛼) = 𝜑(𝑝) + (𝑚𝛼 − 𝑝)𝜑′(𝑝) + 𝑂((𝑚𝛼 − 𝑝)2) (OC.5) 

and for the integrand of the left-hand side: 

𝜑(𝛼𝑞 + (1 − 𝛼)𝑝) = 𝜑(𝑝) + 𝛼(𝑞 − 𝑝)𝜑′(𝑝) +
1

2
𝛼2(𝑞 − 𝑝)2𝜑′′(𝑝) + 𝑜(𝛼2) . 

Hence the left-hand side of Eq. OC.4 is: 

  𝜑(𝑝) + 𝛼𝜑′(𝑝) ∫ (𝑞 − 𝑝)𝑑𝜇
Δ(𝑆)

+
1

2
𝛼2𝜑′′(𝑝) ∫ (𝑞 − 𝑝)2𝑑𝜇

Δ(𝑆)
+ 𝑜(𝛼2) =  

  𝜑(𝑝) +
1

2
𝛼2𝜑′′(𝑝)𝜏2 + 𝑜(𝛼2) (OC.6) 

(the term with 𝜑′ drops). Because of Eq. OC.4 we can equate Eqs. OC.5 and OC.6: 

  (𝑚𝛼 − 𝑝)𝜑′(𝑝) + 𝑂((𝑚𝛼 − 𝑝)2) =
1

2
𝛼2𝜑′′(𝑝)𝜏2 + 𝑜(𝛼2) . 

Dividing by 𝜑′(𝑝), which does not affect 𝑂 or o: 

  (𝑚𝛼 − 𝑝)(1 + 𝑂(𝑚𝛼 − 𝑝))  =  
1

2
𝛼2 𝜑′′(𝑝)

𝜑′(𝑝)
𝜏2 + 𝑜(𝛼2) . 

𝑚𝛼 − 𝑝 =  
−

1
2

𝛼2𝐴(𝑝)𝜏2 + 𝑜(𝛼2)

(1 + 𝑂(𝑚𝛼 − 𝑝))

= −
1

2
𝛼2𝐴(𝑝)𝜏2 +

𝑂(𝑚𝛼 − 𝑝)
1
2 𝛼2𝐴(𝑝)𝜏2 + 𝑜(𝛼2)

(1 + 𝑂(𝑚𝛼 − 𝑝))

=  −
1

2
𝐴(𝑝)𝛼2𝜏2 + 𝑜(𝛼2)  =  −

1

2
𝐴(𝑝)𝛼2𝜏2 + 𝑜(𝛼2𝜏2) . 

𝛼2𝜏2 here is the variance of the event in Eq. OC.3 i.e., it is denoted 𝜎2 in Eq. OC.2 which 

now follows.  □ 
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Eq. OC.2 is Pratt’s (1964) Eq. 5, but with probabilities replacing monetary outcomes. 

It illustrates once more that uncertainty about probabilities is treated in this analysis in 

the same way as uncertainty about outcomes was treated in traditional analyses.  

 Our aversion index 𝑏, which is Eq. OC.2 averaged over ℋ and multiplied by 2 

for normalization (see §2.2), we get Eq. 13: 

  𝑏 =  𝜎2𝐴(𝑝) + 𝑜(𝜎2) . (OC.7)  

It is the product of what is sometimes interpreted as ambiguity perception (𝜎2) and a 

relative index per perceived unit, 𝐴(𝑝). A similar decomposition occurred in Eq. 20, 

where it was discussed further. Eq. OC.7 makes the average of this product, involving 

the not directly observable 𝑝, 𝐴, and 𝜎2, directly observable because 𝑏 is. 

 By Eq. OC.2, 𝑎 =  1 −
𝐶𝑜𝑣(𝑝,𝜈)

𝑉𝑎𝑟(𝜈)
+

𝐶𝑜𝑣(
1

2
𝜎2𝐴(𝑝)+𝑜(𝜎2),𝜈)

𝑉𝑎𝑟(𝜈)
. Because 𝐶𝑜𝑣(𝑝, 𝜈) =

𝑉𝑎𝑟(𝜈) (Eq. 25), we obtain Eq. 14. That is, the insensitivity index is: 

  𝑎 =  
1

2
 

𝐶𝑜𝑣(𝜎2𝐴(𝑝),𝜈)

𝑉𝑎𝑟(𝜈)
 +  𝑜(𝜎2) .  

It captures how the aversion premium (Eq. OC.2) increases with event size 𝜈, which 

indeed reflects insensitivity. This degree of ambiguity (perception), depending on 

variance of the event probability, is similar to Izhakian’s (2017) measure in his 

variation of the smooth model that uses Choquet expected utility rather than expected 

utility in the second stage. 
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Online Appendix OD: Comparison of 𝐚 with 𝐚′ in the experiment of 

Baillon et al. (2018) 

The experiment of Baillon et al (2018) consisted of two treatments (control vs. time 

pressure) and two parts. Each scatter plot displays 𝑎′ ( 
𝐶𝑜𝑣(𝑚,𝑃)

𝑉𝑎𝑟(𝑃)
) as a function of 𝑎 ( 

𝐶𝑜𝑣(𝑚,𝜈)

𝑉𝑎𝑟(𝜈)
). Points that are not on the diagonal are all due to violations of the basic 

condition of monotonicity, so that our theoretical analyses do not apply to them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

FIGURE O.1. 𝑎′ as a function of 𝑎 for the control treatment – Part 1 
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FIGURE O.2. 𝑎′ as a function of 𝑎 for the control treatment – Part 2 

FIGURE O.3. Figure O.3. 𝑎′ as a function of 𝑎 for the time pressure treatment – Part 

1 
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